Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a8, author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. V. Tsvetkova}, title = {Nonlinear {Effects} and {Run-up} of {Coastal} {Waves} {Generated} by {Billiards} with {Semi-rigid} {Walls} in the {Framework} of {Shallow} {Water} {Theory}}, journal = {Informatics and Automation}, pages = {111--123}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii AU - A. V. Tsvetkova TI - Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory JO - Informatics and Automation PY - 2023 SP - 111 EP - 123 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/ LA - ru ID - TRSPY_2023_322_a8 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %A A. V. Tsvetkova %T Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory %J Informatics and Automation %D 2023 %P 111-123 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/ %G ru %F TRSPY_2023_322_a8
S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. V. Tsvetkova. Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 111-123. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/
[1] A. Yu. Anikin, S. Yu. Dobrokhotov, and V. E. Nazaikinskii, “Simple asymptotics for a generalized wave equation with degenerating velocity and their applications in the linear long wave run-up problem”, Math. Notes, 104:3–4 (2018), 471–488 | DOI | DOI | MR | MR | Zbl
[2] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theor. Math. Phys., 201:3 (2019), 1742–1770 | DOI | DOI | MR | MR | Zbl
[3] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotics, related to billiards with semi-rigid walls, of eigenfunctions of the $\nabla D(x)\nabla $ operator in dimension $2$ and trapped coastal waves”, Math. Notes, 105:5–6 (2019), 789–794 | DOI | DOI | MR | Zbl
[4] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotic eigenfunctions of the operator $\nabla D(x)\nabla $ defined in a two-dimensional domain and degenerating on its boundary and billiards with semi-rigid walls”, Diff. Eqns., 55:5 (2019), 644–657 | DOI | MR | Zbl
[5] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves”, St. Petersbg. Math. J., 33:2 (2022), 185–205 | DOI | MR | Zbl
[6] N. N. Bogoliubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl
[7] Carrier G.F., Greenspan H.P., “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl
[8] Dobrokhotov S.Yu., Minenkov D.S., Nazaikinskii V.E., “Asymptotic solutions of the Cauchy problem for the nonlinear shallow water equations in a basin with a gently sloping beach”, Russ. J. Math. Phys., 29:1 (2022), 28–36 | DOI | MR | Zbl
[9] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “On the asymptotics of a Bessel-type integral having applications in wave run-up theory”, Math. Notes, 102:5–6 (2017), 756–762 | DOI | DOI | MR | Zbl
[10] Dobrokhotov S.Yu., Nazaikinskii V.E., Tolchennikov A.A., “Uniform formulas for the asymptotic solution of a linear pseudodifferential equation describing water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 185–191 | DOI | MR | Zbl
[11] LeBlond P.H., Mysak L.A., Waves in the ocean, Elsevier, Amsterdam, 1978 ; Le Blon P., Maisek L., Volny v okeane, Mir, M., 1981 | MR | MR
[12] Mei C.C., The applied dynamics of ocean surface waves, World Scientific, Singapore, 1989 | Zbl
[13] Merzon A.E., Zhevandrov P.N., “High-frequency asymptotics of edge waves on a beach of nonconstant slope”, SIAM J. Appl. Math., 59:2 (1998), 529–546 | DOI | MR
[14] V. E. Nazaikinskii, “The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary”, Math. Notes, 96:1–2 (2014), 248–260 | DOI | DOI | MR | Zbl
[15] V. E. Nazaikinskii, “On an elliptic operator degenerating on the boundary”, Funct. Anal. Appl., 56:4 (2022), 324–326 | DOI | DOI | MR
[16] O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form, Plenum, New York, 1973 | MR
[17] Shrira V.I., Sheremet A., Troitskaya Yu.I., Soustova I.A., “Can edge waves be generated by wind?”, J. Fluid Mech, 934 (2022), A16 | DOI | MR | Zbl
[18] Sretenskii L.N., Teoriya volnovykh dvizhenii zhidkosti, 2-e izd., Nauka, M., 1977
[19] Stoker J.J., Water waves: The mathematical theory with applications, Interscience, New York, 1957 | MR | Zbl
[20] Ursell F., “Edge waves on a sloping beach”, Proc. R. Soc. London A, 214 (1952), 79–97 | DOI | MR | Zbl
[21] Zhevandrov P., “Edge waves on a gently sloping beach: Uniform asymptotics”, J. Fluid Mech., 233 (1991), 483–493 | DOI | MR | Zbl