Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 111-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

By coastal waves we mean time-periodic or nearly time-periodic gravity waves on water in a basin of depth $D(x)$, $x=(x_1,x_2)$, that are localized in the vicinity of the coastline $\Gamma ^0=\{D(x)=0\}$. In this paper, for the system of nonlinear shallow water equations, we construct asymptotic solutions corresponding to coastal waves in two specific examples. The solutions are presented in the form of parametrically defined functions corresponding to asymptotic solutions of the linearized system, which, in turn, are related to the asymptotic eigenfunctions of the operator $-\nabla \cdot (g D(x)\nabla )$ that are generated by billiards with semi-rigid walls.
Keywords: nonlinear shallow water equations, run-up on coast, billiard with semi-rigid walls, global asymptotics, Bessel function, Airy function.
@article{TRSPY_2023_322_a8,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. V. Tsvetkova},
     title = {Nonlinear {Effects} and {Run-up} of {Coastal} {Waves} {Generated} by {Billiards} with {Semi-rigid} {Walls} in the {Framework} of {Shallow} {Water} {Theory}},
     journal = {Informatics and Automation},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
AU  - A. V. Tsvetkova
TI  - Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory
JO  - Informatics and Automation
PY  - 2023
SP  - 111
EP  - 123
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/
LA  - ru
ID  - TRSPY_2023_322_a8
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%A A. V. Tsvetkova
%T Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory
%J Informatics and Automation
%D 2023
%P 111-123
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/
%G ru
%F TRSPY_2023_322_a8
S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. V. Tsvetkova. Nonlinear Effects and Run-up of Coastal Waves Generated by Billiards with Semi-rigid Walls in the Framework of Shallow Water Theory. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 111-123. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a8/

[1] A. Yu. Anikin, S. Yu. Dobrokhotov, and V. E. Nazaikinskii, “Simple asymptotics for a generalized wave equation with degenerating velocity and their applications in the linear long wave run-up problem”, Math. Notes, 104:3–4 (2018), 471–488 | DOI | DOI | MR | MR | Zbl

[2] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theor. Math. Phys., 201:3 (2019), 1742–1770 | DOI | DOI | MR | MR | Zbl

[3] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotics, related to billiards with semi-rigid walls, of eigenfunctions of the $\nabla D(x)\nabla $ operator in dimension $2$ and trapped coastal waves”, Math. Notes, 105:5–6 (2019), 789–794 | DOI | DOI | MR | Zbl

[4] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotic eigenfunctions of the operator $\nabla D(x)\nabla $ defined in a two-dimensional domain and degenerating on its boundary and billiards with semi-rigid walls”, Diff. Eqns., 55:5 (2019), 644–657 | DOI | MR | Zbl

[5] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves”, St. Petersbg. Math. J., 33:2 (2022), 185–205 | DOI | MR | Zbl

[6] N. N. Bogoliubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl

[7] Carrier G.F., Greenspan H.P., “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl

[8] Dobrokhotov S.Yu., Minenkov D.S., Nazaikinskii V.E., “Asymptotic solutions of the Cauchy problem for the nonlinear shallow water equations in a basin with a gently sloping beach”, Russ. J. Math. Phys., 29:1 (2022), 28–36 | DOI | MR | Zbl

[9] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “On the asymptotics of a Bessel-type integral having applications in wave run-up theory”, Math. Notes, 102:5–6 (2017), 756–762 | DOI | DOI | MR | Zbl

[10] Dobrokhotov S.Yu., Nazaikinskii V.E., Tolchennikov A.A., “Uniform formulas for the asymptotic solution of a linear pseudodifferential equation describing water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 185–191 | DOI | MR | Zbl

[11] LeBlond P.H., Mysak L.A., Waves in the ocean, Elsevier, Amsterdam, 1978 ; Le Blon P., Maisek L., Volny v okeane, Mir, M., 1981 | MR | MR

[12] Mei C.C., The applied dynamics of ocean surface waves, World Scientific, Singapore, 1989 | Zbl

[13] Merzon A.E., Zhevandrov P.N., “High-frequency asymptotics of edge waves on a beach of nonconstant slope”, SIAM J. Appl. Math., 59:2 (1998), 529–546 | DOI | MR

[14] V. E. Nazaikinskii, “The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary”, Math. Notes, 96:1–2 (2014), 248–260 | DOI | DOI | MR | Zbl

[15] V. E. Nazaikinskii, “On an elliptic operator degenerating on the boundary”, Funct. Anal. Appl., 56:4 (2022), 324–326 | DOI | DOI | MR

[16] O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form, Plenum, New York, 1973 | MR

[17] Shrira V.I., Sheremet A., Troitskaya Yu.I., Soustova I.A., “Can edge waves be generated by wind?”, J. Fluid Mech, 934 (2022), A16 | DOI | MR | Zbl

[18] Sretenskii L.N., Teoriya volnovykh dvizhenii zhidkosti, 2-e izd., Nauka, M., 1977

[19] Stoker J.J., Water waves: The mathematical theory with applications, Interscience, New York, 1957 | MR | Zbl

[20] Ursell F., “Edge waves on a sloping beach”, Proc. R. Soc. London A, 214 (1952), 79–97 | DOI | MR | Zbl

[21] Zhevandrov P., “Edge waves on a gently sloping beach: Uniform asymptotics”, J. Fluid Mech., 233 (1991), 483–493 | DOI | MR | Zbl