Internal Stresses in an Elastic Half-space under Discrete Contact Conditions
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 94-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the contact interaction of a periodic system of axisymmetric rigid indenters with two height levels with an elastic half-space in the absence of friction forces. To construct a solution of the problem, we use the localization method. We obtain analytical expressions for the characteristics of the contact interaction (the radius of contact spots and the distribution of contact pressure) as well as for the components of the internal stress tensor on the symmetry axes of indenters of both levels. We analyze the effect of the shape of the contact surface of indenters, which is described by a power function (with arbitrary integer exponent), and the spatial arrangement of indenters on the contact characteristics and the stressed state of the elastic half-space.
Keywords: periodic contact, elastic half-space, two-level system of indenters, internal stresses, indenter shape.
@article{TRSPY_2023_322_a7,
     author = {I. G. Goryacheva and A. A. Yakovenko},
     title = {Internal {Stresses} in an {Elastic} {Half-space} under {Discrete} {Contact} {Conditions}},
     journal = {Informatics and Automation},
     pages = {94--110},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a7/}
}
TY  - JOUR
AU  - I. G. Goryacheva
AU  - A. A. Yakovenko
TI  - Internal Stresses in an Elastic Half-space under Discrete Contact Conditions
JO  - Informatics and Automation
PY  - 2023
SP  - 94
EP  - 110
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a7/
LA  - ru
ID  - TRSPY_2023_322_a7
ER  - 
%0 Journal Article
%A I. G. Goryacheva
%A A. A. Yakovenko
%T Internal Stresses in an Elastic Half-space under Discrete Contact Conditions
%J Informatics and Automation
%D 2023
%P 94-110
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a7/
%G ru
%F TRSPY_2023_322_a7
I. G. Goryacheva; A. A. Yakovenko. Internal Stresses in an Elastic Half-space under Discrete Contact Conditions. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 94-110. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a7/

[1] Ai X., Sawamiphakdi K., “Solving elastic contact between rough surfaces as an unconstrained strain energy minimization by using CGM and FFT techniques”, J. Tribol., 121:4 (1999), 639–647 | DOI

[2] Bemporad A., Paggi M., “Optimization algorithms for the solution of the frictionless normal contact between rough surfaces”, Int. J. Solids Struct., 69–70 (2015), 94–105 | DOI

[3] Chen W.W., Liu S., Wang Q.J., “Fast Fourier transform based numerical methods for elasto-plastic contacts of nominally flat surfaces”, J. Appl. Mech., 75:1 (2008), 011022 | DOI

[4] Ciavarella M., Delfine V., Demelio G., “A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces”, J. Mech. Phys. Solids, 54:12 (2006), 2569–2591 | DOI | Zbl

[5] Ciavarella M., Greenwood J.A., Paggi M., “Inclusion of “interaction” in the Greenwood and Williamson contact theory”, Wear, 265:5–6 (2008), 729–734 | DOI

[6] L. A. Galin, Contact Problems: The Legacy of L. A. Galin, Springer, Cham, 2008 | MR | MR | Zbl

[7] I. G. Goryacheva, “The periodic contact problem for an elastic half-space”, J. Appl. Math. Mech., 62:6 (1998), 959–966 | DOI | MR

[8] Goryacheva I.G., Mekhanika friktsionnogo vzaimodeistviya, Nauka, M., 2001

[9] I. G. Goryacheva and I. Yu. Tsukanov, “Development of discrete contact mechanics with applications to study the frictional interaction of deformable bodies”, Mech. Solids, 55:8 (2020), 1441–1462 | DOI | DOI | MR | Zbl

[10] I. G. Goryacheva and A. A. Yakovenko, “Indentation of a rigid cylinder with a rough flat base into a thin viscoelastic layer”, J. Appl. Mech. Tech. Phys., 62:5 (2021), 723–735 | DOI | DOI | MR | Zbl

[11] Greenwood J.A., Williamson J.B.P., “Contact of nominally flat surfaces”, Proc. R. Soc. London A, 295:1442 (1966), 300–319 | DOI

[12] Jackson R.L., Krithivasan V., Wilson W.E., “The pressure to cause complete contact between elastic–plastic sinusoidal surfaces”, Proc. Inst. Mech. Eng. J: J. Eng. Tribol., 222:7 (2008), 857–863 | DOI

[13] K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge, 1985 | Zbl

[14] Johnson K.L., Greenwood J.A., Higginson J.G., “The contact of elastic regular wavy surfaces”, Int. J. Mech. Sci., 27:6 (1985), 383–396 | DOI | MR | Zbl

[15] Kim T.W., Bhushan B., Cho Y.J., “The contact behavior of elastic/plastic non-Gaussian rough surfaces”, Tribol. Lett., 22:1 (2006), 1–13 | DOI | MR | Zbl

[16] Yu. Yu. Makhovskaya and I. G. Goryacheva, “Modeling of soft phase transfer to the surface of multicomponent aluminum alloy in friction”, Phys. Mesomech., 19:3 (2016), 239–247 | DOI

[17] Tripp J.H., Van Kuilenburg J., Morales-Espejel G.E., Lugt P.M., “Frequency response functions and rough surface stress analysis”, Tribol. Trans., 46:3 (2003), 376–382 | DOI

[18] Yakovenko A., Goryacheva I., “The discrete contact problem for a two-level system of indenters”, Contin. Mech. Thermodyn., 35:4 (2023), 1387–1401 | DOI | MR

[19] Yang L., Wang Z., Liu W., Zhang G., Peng B., “Interior-stress fields produced by a general axisymmetric punch”, Friction, 10:4 (2022), 530–544 | DOI

[20] Yu M.M.H., Bhushan B., “Contact analysis of three-dimensional rough surfaces under frictionless and frictional contact”, Wear, 200:1–2 (1996), 265–280