On the Problem of Energy Concentration
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the well-known problem of energy concentration, which is the inverse of the strong explosion or the expanding piston problem. Using a number of physical examples, we show that under certain conditions and with certain forces involved in the focusing process, one can achieve the concentration of any amount of energy. First of all, this applies to the gravity force and its manifestation in problems of relativity theory with viscosity and heat conduction taken into account.
Keywords: energy concentration, collapse, theory of relativity, viscous heat-conducting gas.
@article{TRSPY_2023_322_a6,
     author = {A. N. Golubyatnikov and D. V. Ukrainskii},
     title = {On the {Problem} of {Energy} {Concentration}},
     journal = {Informatics and Automation},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a6/}
}
TY  - JOUR
AU  - A. N. Golubyatnikov
AU  - D. V. Ukrainskii
TI  - On the Problem of Energy Concentration
JO  - Informatics and Automation
PY  - 2023
SP  - 83
EP  - 93
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a6/
LA  - ru
ID  - TRSPY_2023_322_a6
ER  - 
%0 Journal Article
%A A. N. Golubyatnikov
%A D. V. Ukrainskii
%T On the Problem of Energy Concentration
%J Informatics and Automation
%D 2023
%P 83-93
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a6/
%G ru
%F TRSPY_2023_322_a6
A. N. Golubyatnikov; D. V. Ukrainskii. On the Problem of Energy Concentration. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 83-93. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a6/

[1] O. I. Bogoyavlensky, Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer, Berlin, 1985 | MR | MR | Zbl

[2] A. N. Golubyatnikov, “On the acceleration of shock waves and concentration of energy”, Proc. Steklov Inst. Math., 281 (2013), 153–160 | DOI | MR | Zbl

[3] A. N. Golubyatnikov and D. V. Ukrainskii, “Dynamics of a spherical bubble in non-Newtonian liquids”, Fluid Dyn., 56:4 (2021), 492–502 | DOI | DOI | MR

[4] A. N. Golubyatnikov and D. V. Ukrainskii, “An exact solution on compression of a cavity in a viscous heat-conducting compressible medium”, Fluid Dyn., 57:4 (2022), 494–502 | DOI | MR | Zbl

[5] Golubyatnikov A.N., Ukrainskii D.V., “K probleme kontsentratsii energii”, Superkompyuternye tekhnologii matematicheskogo modelirovaniya: Tez. dokl. V Mezhdunar. konf. (M., 2022), Izd. dom SVFU, Yakutsk, 2022, 14

[6] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, \textup {Vol. 2:} The Classical Theory of Fields, Pergamon Press, Oxford, 1975 | MR | MR

[7] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, \textup {Vol. 6:} Fluid Mechanics, Pergamon Press, Oxford, 1987 | MR | MR

[8] Misner C., Sharp D., “Relativistic equations for adiabatic, spherically symmetric gravitational collapse”, Phys. Rev. B, 136:2 (1964), 571–576 | MR

[9] Odintsov V.A., K.P. Stanyukovich i implozivnyi vzryv, Izd-vo MGTU im. N.E. Baumana, M., 2005

[10] Rayleigh., “On the pressure developed in a liquid during the collapse of a spherical cavity”, Phil. Mag. Ser. 6, 34 (1917), 94–98 | DOI

[11] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Raton, 1993 | MR | MR

[12] Zababakhin E.I., Zababakhin I.E., Yavleniya neogranichennoi kumulyatsii, Nauka, M., 1988