Mathematical Model of Equilibrium Plasma Configurations in Magnetic Traps and Their Stability Analysis
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 58-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a review of numerical investigations of a special class of magnetic field-based plasma confinement traps in which current-carrying conductors are immersed in plasma. These traps are referred to as Galatea traps, as proposed by A. I. Morozov. The investigations are presented as applied to a cylinder with two conductors parallel to the axis, which is a straightened analog of a toroidal Galatea-belt trap. The mathematical model of equilibrium is based on a boundary value problem for the two-dimensional elliptic Grad–Shafranov equation, which is solved numerically. Of main interest are various approaches to the stability analysis of magnetoplasma configurations in a trap and the dependence of stability on the geometry and parameters of the problem. We analyze the linear-approximation stability of one-dimensional configurations surrounding a conductor and of two-dimensional configurations in a Galatea-belt trap. The main result of calculations in various problem statements is that the ratio of the characteristic gas and magnetic pressures under which stability occurs is bounded from above. We give a brief account of the main results published in recent years and present new results obtained recently.
Keywords: controlled thermonuclear fusion, magnetic traps, mathematical simulation, equilibrium magnetoplasma configurations, stability.
@article{TRSPY_2023_322_a4,
     author = {K. V. Brushlinskii and V. V. Kryuchenkov and E. V. Stepin},
     title = {Mathematical {Model} of {Equilibrium} {Plasma} {Configurations} in {Magnetic} {Traps} and {Their} {Stability} {Analysis}},
     journal = {Informatics and Automation},
     pages = {58--70},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a4/}
}
TY  - JOUR
AU  - K. V. Brushlinskii
AU  - V. V. Kryuchenkov
AU  - E. V. Stepin
TI  - Mathematical Model of Equilibrium Plasma Configurations in Magnetic Traps and Their Stability Analysis
JO  - Informatics and Automation
PY  - 2023
SP  - 58
EP  - 70
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a4/
LA  - ru
ID  - TRSPY_2023_322_a4
ER  - 
%0 Journal Article
%A K. V. Brushlinskii
%A V. V. Kryuchenkov
%A E. V. Stepin
%T Mathematical Model of Equilibrium Plasma Configurations in Magnetic Traps and Their Stability Analysis
%J Informatics and Automation
%D 2023
%P 58-70
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a4/
%G ru
%F TRSPY_2023_322_a4
K. V. Brushlinskii; V. V. Kryuchenkov; E. V. Stepin. Mathematical Model of Equilibrium Plasma Configurations in Magnetic Traps and Their Stability Analysis. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 58-70. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a4/

[1] Arsenin V.Ya., Metody matematicheskoi fiziki i spetsialnye funktsii, Nauka, M., 1984 ; Beitman G., MGD-neustoichivosti, Energoizdat, M., 1982 | MR

[2] G. Bateman, MHD Instabilities, MIT Press, Cambridge, 1978

[3] Braginskii S.I., Gelfand I.M., Fedorenko R.P., “Teoriya szhatiya i pulsatsii plazmennogo stolba v moschnom impulsnom razryade”, Fizika plazmy i problema upravlyaemykh termoyadernykh reaktsii, v. 4, Pod red. M.A. Leontovicha, Izd-vo AN SSSR, M., 1958, 201–221

[4] K. V. Brushlinskii, “Two approaches to the stability problem for plasma equilibrium in a cylinder”, J. Appl. Math. Mech., 65:2 (2001), 229–236 | DOI | MR | Zbl

[5] Brushlinskii K.V., Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, Binom. Lab. znanii, M., 2009

[6] Brushlinskii K.V., Matematicheskie osnovy vychislitelnoi mekhaniki zhidkosti, gaza i plazmy, ID “Intellekt”, Dolgoprudnyi, 2017

[7] K. V. Brushlinskii, A. S. Gol'dich, and A. S. Desyatova, “Plasmostatic models of magnetic galateya-traps”, Math. Models Comput. Simul., 5:2 (2013), 156–166 | DOI | MR

[8] K. V. Brushlinskii and P. A. Ignatov, “A plasmastatic model of the galathea-belt magnetic trap”, Comput. Math. Math. Phys., 50:12 (2010), 2071–2081 | DOI | MR | Zbl

[9] K. V. Brushlinskii and I. A. Kondratyev, “Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps”, Math. Models Comput. Simul., 11:1 (2019), 121–132 | DOI | MR

[10] K. V. Brushlinskii, S. A. Krivtsov, and E. V. Stepin, “On the stability of plasma equilibrium in the neighborhood of a straight current conductor”, Comput. Math. Math. Phys., 60:4 (2020), 686–696 | DOI | MR | Zbl

[11] K. V. Brushlinskii, A. I. Morozov, and N. B. Petrovskaya, “Numerical modeling of a helical equilibrium configuration with plasma on a separatrix”, Mat. Model., 10:11 (1998), 29–36

[12] K. V. Brushlinskii and E. V. Stepin, “Mathematical models of equilibrium configurations of plasma surrounding current-carrying conductors”, Diff. Eqns., 56:7 (2020), 872–881 | DOI | MR | Zbl

[13] Brushlinskii K.V., Stepin E.V., “On equilibrium magnetoplasma configurations in “Galatea-Belt” magnetic traps”, J. Phys.: Conf. Ser., 2028 (2021), 012026 | DOI

[14] K. V. Brushlinskii and E. V. Stepin, “Stability issues in two-dimensional mathematical models of plasma equilibrium in magnetic galathea traps”, Diff. Eqns., 57:7 (2021), 835–847 | DOI | MR | Zbl

[15] K. V. Brushlinskii, N. M. Zueva, M. S. Mikhailova, A. I. Morozov, V. D. Pustovitov, and N. B. Tuzova, “Numerical simulation of straight helical sheaths with conductors immersed in plasma”, Plasma Phys. Rep., 20:3 (1994), 257–264

[16] D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, 1969

[17] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Am. Math. Soc. Transl., Ser. 2,, 29 (1963), 295–381 | MR | MR | Zbl | Zbl

[18] Grad H., Rubin H., “Hydrodynamic equilibria and force-free fields”, Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy (Geneva, 1958), v. 31, Theoretical and experimental aspects of controlled nuclear fusion, United Nations, Geneva, 1958, 190–197

[19] Kadomtsev B.B., “Gidromagnitnaya ustoichivost plazmy”, Voprosy teorii plazmy, Vyp. 2, Pod red. M.A. Leontovicha, Gosatomizdat, M., 1963, 132–176

[20] A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MA, 1965

[21] Lions P.L., “On the existence of positive solutions of semilinear elliptic equations”, SIAM Rev., 24:4 (1982), 441–467 | DOI | MR | Zbl

[22] A. I. Morozov, “Galatheas'—plasma confinement systems in which the conductors are immersed in the plasma”, Sov. J. Plasma Phys., 18:3 (1992), 159–165

[23] A. I. Morozov, A. I. Bugrova, A. M. Bishaev, A. S. Lipatov, and M. V. Kozintseva, “Plasma parameters in the upgraded Trimyx-M Galathea”, Tech. Phys., 52:12 (2007), 1546–1551 | DOI

[24] A. I. Morozov and A. G. Frank, “Galateya toroidal multipole trap with azimuthal current”, Plasma Phys. Rep., 20:11 (1994), 879–886

[25] A. I. Morozov and V. D. Pustovitov, “Stellarator with levitating coils”, Sov. J. Plasma Phys., 17:10 (1991), 740

[26] A. I. Morozov and V. V. Savel'ev, “On Galateas—magnetic traps with plasma-embedded conductors”, Phys. Usp., 41:11 (1998), 1049–1089 | DOI | DOI

[27] S. I. Pokhozhaev, “Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$”, Sov. Math., Dokl., 6 (1965), 1408–1411 | Zbl

[28] Semenov N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti, Izd-vo AN SSSR, M., 1958

[29] V. D. Shafranov, “On magnetohydrodynamical equilibrium configurations”, Sov. Phys. JETP, 6:3 (1958), 545–554 | MR | Zbl

[30] A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, “Stability of plasma”, Phys. Usp., 4:2 (1961), 332–369 | DOI | DOI | MR

[31] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, 1985 | MR