Separatrix Maps in Slow--Fast Hamiltonian Systems
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 38-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain explicit formulas for the separatrix map of a multidimensional slow–fast Hamiltonian system. This map is used to partly extend Neishtadt's results on the jumps of adiabatic invariants at the separatrix to the multidimensional case.
Keywords: slow–fast system, Poincaré function, separatrix map
Mots-clés : homoclinic orbit, adiabatic invariant.
@article{TRSPY_2023_322_a3,
     author = {Sergey V. Bolotin},
     title = {Separatrix {Maps} in {Slow--Fast} {Hamiltonian} {Systems}},
     journal = {Informatics and Automation},
     pages = {38--57},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a3/}
}
TY  - JOUR
AU  - Sergey V. Bolotin
TI  - Separatrix Maps in Slow--Fast Hamiltonian Systems
JO  - Informatics and Automation
PY  - 2023
SP  - 38
EP  - 57
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a3/
LA  - ru
ID  - TRSPY_2023_322_a3
ER  - 
%0 Journal Article
%A Sergey V. Bolotin
%T Separatrix Maps in Slow--Fast Hamiltonian Systems
%J Informatics and Automation
%D 2023
%P 38-57
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a3/
%G ru
%F TRSPY_2023_322_a3
Sergey V. Bolotin. Separatrix Maps in Slow--Fast Hamiltonian Systems. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 38-57. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a3/

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl

[2] Bolotin S.V., “Jumps of energy near a homoclinic set of a slowly time dependent Hamiltonian system”, Regul. Chaotic Dyn., 24:6 (2019), 682–703 | DOI | MR | Zbl

[3] S. V. Bolotin, “Local adiabatic invariants near a homoclinic set of a slow–fast Hamiltonian system”, Proc. Steklov Inst. Math., 310 (2020), 12–24 | DOI | DOI | MR | Zbl

[4] Bolotin S., Negrini P., “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 | DOI | MR | Zbl

[5] Bolotin S.V., Rabinowitz P.H., “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Diff. Eqns., 148:2 (1998), 364–387 | DOI | MR | Zbl

[6] S. V. Bolotin and D. V. Treschev, “The anti-integrable limit”, Russ. Math. Surv., 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl

[7] Brännström N., de Simone E., Gelfreich V., “Geometric shadowing in slow–fast Hamiltonian systems”, Nonlinearity, 23:5 (2010), 1169–1184 | DOI | MR | Zbl

[8] Delshams A., Gidea M., Roldán P., “Transition map and shadowing lemma for normally hyperbolic invariant manifolds”, Discrete Contin. Dyn. Syst., 33 (2013), 1089–1112 | DOI | MR | Zbl

[9] Delshams A., de la Llave R., Seara T.M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl

[10] Deng B., “The Sil'nikov problem, exponential expansion, strong $\lambda $-lemma, $C^1$-linearization, and homoclinic bifurcation”, J. Diff. Eqns., 79:2 (1989), 189–231 | DOI | MR | Zbl

[11] Fenichel N., “Persistence and smoothness of invariant manifolds for flows”, Indiana Univ. Math. J., 21:3 (1972), 193–226 | DOI | MR

[12] Gelfreich V., Turaev D., “Unbounded energy growth in Hamiltonian systems with a slowly varying parameter”, Commun. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl

[13] Gidea M., de la Llave R., “Perturbations of geodesic flows by recurrent dynamics”, J. Eur. Math. Soc., 19:3 (2017), 905–956 | DOI | MR | Zbl

[14] Kaloshin V., Zhang K., “Arnold diffusion for smooth convex systems of two and a half degrees of freedom”, Nonlinearity, 28:8 (2015), 2699–2720 | DOI | MR | Zbl

[15] Li X., Cheng C.-Q., “Connecting orbits of autonomous Lagrangian systems”, Nonlinearity, 23:1 (2010), 119–141 | DOI | MR | Zbl

[16] A. I. Neishtadt, “On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom”, J. Appl. Math. Mech., 51:5 (1987), 586–592 | DOI | MR | Zbl

[17] Neishtadt A., Vasiliev A., “Phase change between separatrix crossings in slow–fast Hamiltonian systems”, Nonlinearity, 18:3 (2005), 1393–1406 | DOI | MR | Zbl

[18] Neishtadt A.I., Vasiliev A.A., Artemyev A.V., “Capture into resonance and escape from it in a forced nonlinear pendulum”, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR | Zbl

[19] G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems”, Russ. Math. Surv., 62:2 (2007), 219–322 | DOI | DOI | MR | Zbl

[20] L. P. Šil'nikov, “On a Poincaré–Birkhoff problem”, Math. USSR, Sb., 3:3 (1967), 353–371 | DOI

[21] Shilnikov L.P., Turaev D.V., “Super-homoclinic orbits and multi-pulse homoclinic loops in Hamiltonian systems with discrete symmetries”, Regul. Chaotic Dyn., 2:3–4 (1997), 126–138 | MR | Zbl

[22] Treschev D., “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl

[23] Treschev D., “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl

[24] Treschev D., Zybelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl

[25] Vasileva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990