Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a21, author = {M. E. Eglit and Yu. A. Drozdova and I. N. Usachev and A. V. Drozdov}, title = {Flows of {Liquids} with a {Yield} {Strength} in {Pipes} under a {Pulsating} {Pressure} {Drop}}, journal = {Informatics and Automation}, pages = {282--295}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/} }
TY - JOUR AU - M. E. Eglit AU - Yu. A. Drozdova AU - I. N. Usachev AU - A. V. Drozdov TI - Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop JO - Informatics and Automation PY - 2023 SP - 282 EP - 295 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/ LA - ru ID - TRSPY_2023_322_a21 ER -
%0 Journal Article %A M. E. Eglit %A Yu. A. Drozdova %A I. N. Usachev %A A. V. Drozdov %T Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop %J Informatics and Automation %D 2023 %P 282-295 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/ %G ru %F TRSPY_2023_322_a21
M. E. Eglit; Yu. A. Drozdova; I. N. Usachev; A. V. Drozdov. Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 282-295. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/
[1] Abbas Z., Shabbir M.S., Ali N., “Analysis of rheological properties of Herschel–Bulkley fluid for pulsating flow of blood in $\omega $-shaped stenosed artery”, AIP Adv., 7:10 (2017), 105123 | DOI
[2] Barnes H.A., “Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids”, J. Rheol., 33:2 (1989), 329–366 | DOI
[3] Barnes H.A., Townsend P., Walters K., “Flow of non-Newtonian liquids under a varying pressure gradient”, Nature, 224:5219 (1969), 585–587 | DOI
[4] Barnes H.A., Townsend P., Walters K., “On pulsatile flow of non-Newtonian liquids”, Rheol. acta, 10:4 (1971), 517–527 | DOI
[5] Bessonov N., Sequeira A., Simakov S., Vassilevskii Yu., Volpert V., “Methods of blood flow modelling”, Math. Model. Nat. Phenom., 11:1 (2016), 1–25 | DOI | MR | Zbl
[6] Çarpinlioǧlu M.Ö., Gündoǧdu M.Y., “A critical review on pulsatile pipe flow studies directing towards future research topics”, Flow Meas. Instrum., 12:3 (2001), 163–174 | DOI
[7] Carvalho V., Pinho D., Lima R.A., Teixeira J.C., Teixeira S., “Blood flow modeling in coronary arteries: A review”, Fluids, 6:2 (2021), 53 | DOI | MR
[8] Daprà I., Scarpi G., “Pulsatile poiseuille flow of a viscoplastic fluid in the gap between coaxial cylinders”, J. Fluids Eng., 133:8 (2011), 081203 | DOI
[9] David J., Filip P., Kharlamov A.A., “Empirical modelling of nonmonotonous behaviour of shear viscosity”, Adv. Mater. Sci. Eng., 2013 (2013), 658187 | DOI
[10] Drozdova Yu.A., Eglit M.E., Yakubenko A.E., “Vliyanie pulsatsii davleniya na dinamiku potokov nenyutonovskikh zhidkostei v trubakh”, XII Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki: Sb. tr., v. 4, RITs BashGU, Ufa, 2019, 343–344
[11] Edwards M.F., Nellist D.A., Wilkinson W.L., “Unsteady, laminar flows of non-Newtonian fluids in pipes”, Chem. Eng. Sci., 27:2 (1972), 295–306 | DOI | MR
[12] Edwards M.F., Nellist D.A., Wilkinson W.L., “Pulsating flow on non-Newtonian fluids in pipes”, Chem. Eng. Sci., 27:3 (1972), 545–553 | DOI | MR
[13] Eglit M.E., Yakubenko A.E., “Numerical modeling of slope flows entraining bottom material”, Cold Reg. Sci. Technol., 108 (2014), 139–148 | DOI
[14] Herschel W.H., Bulkley R., “Konsistenzmessungen von Gummi-Benzollösungen”, Kolloid-Z., 39:4 (1926), 291–300 | DOI
[15] Kajiuchi T., Saito A., “Flow enhancement of laminar pulsating flow of Bingham plastic fluids”, J. Chem. Eng. Japan, 17:1 (1984), 34–38 | DOI
[16] Konan N.A., Rosenbaum E., Massoudi M., “On the response of a Herschel–Bulkley fluid due to a moving plate”, Polymers, 14:18 (2022), 3890 | DOI
[17] Morris J.F., “Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena”, Annu. Rev. Fluid Mech., 52 (2020), 121–144 | DOI | MR | Zbl
[18] Nakamura M., Sawada T., “Numerical study on the laminar pulsatile flow of slurries”, J. Non-Newton. Fluid Mech., 22:2 (1987), 191–206 | DOI
[19] Pan Z., de Cagny H., Weber B., Bonn D., “$\mathrm {S}$-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology”, Phys. Rev. E, 92:3 (2015), 032202 | DOI
[20] Papanastasiou T.C., “Flows of materials with yield”, J. Rheol., 31:5 (1987), 385–404 | DOI | Zbl
[21] Papanastasiou T.C., Boudouvis A.G., “Flows of viscoplastic materials: Models and computations”, Comput. Struct., 64:1–4 (1997), 677–694 | DOI | Zbl
[22] Phan-Thien N., Dudek J., “Pulsating flow of a plastic fluid”, Nature, 296:5860 (1982), 843–844 | DOI
[23] Roberts G.P., Barnes H.A., Carew P., “Modelling the flow behaviour of very shear-thinning liquids”, Chem. Eng. Sci., 56:19 (2001), 5617–5623 | DOI
[24] Sankar D.S., Hemalatha K., “Pulsatile flow of Herschel–Bulkley fluid through stenosed arteries—A mathematical model”, Int. J. Non-linear Mech., 41:8 (2006), 979–990 | DOI | Zbl
[25] Valencia A., Zaratea A., Galvez M., Badilla L., “Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm”, Int. J. Numer. Methods Fluids, 50:6 (2006), 751–764 | DOI | Zbl
[26] Womersley J.R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known”, J. Physiol., 127:3 (1955), 553–563 | DOI
[27] Yilmaz F., Gundogdu M.Y., “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions”, Korea–Aust. Rheol. J., 20:4 (2008), 197–211