Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 282-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Laminar flows of fluids with a yield strength in pipes under the action of a periodically changing pressure drop are considered. The Herschel–Bulkley model is adopted to describe the rheological properties of moving fluids. The effect of pressure drop fluctuations on velocity profiles, as well as on the mean flow rates, friction on the pipe walls, and the thickness of the “quasi-solid” core, is studied numerically, depending on the amplitude and frequency of pressure drop fluctuations, the generalized Bingham number, and the fluid power index. It is shown that in flows of viscoplastic fluids with a power index greater than one, the effect of pressure drop fluctuations is qualitatively different in different ranges of shear rates. Additionally, flows are investigated in which the relative amplitudes of pressure drop oscillations are large. At large amplitudes and low frequencies of pressure drop oscillations, counter-flows periodically arise in the flow and two (rather than one) zones of “quasi-solid” flow are formed; moreover, finite time intervals periodically appear in which the flow rate is zero.
Keywords: non-Newtonian fluids, Herschel–Bulkley model, pulsating flows in pipes, effect of the yield strength.
@article{TRSPY_2023_322_a21,
     author = {M. E. Eglit and Yu. A. Drozdova and I. N. Usachev and A. V. Drozdov},
     title = {Flows of {Liquids} with a {Yield} {Strength} in {Pipes} under a {Pulsating} {Pressure} {Drop}},
     journal = {Informatics and Automation},
     pages = {282--295},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/}
}
TY  - JOUR
AU  - M. E. Eglit
AU  - Yu. A. Drozdova
AU  - I. N. Usachev
AU  - A. V. Drozdov
TI  - Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop
JO  - Informatics and Automation
PY  - 2023
SP  - 282
EP  - 295
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/
LA  - ru
ID  - TRSPY_2023_322_a21
ER  - 
%0 Journal Article
%A M. E. Eglit
%A Yu. A. Drozdova
%A I. N. Usachev
%A A. V. Drozdov
%T Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop
%J Informatics and Automation
%D 2023
%P 282-295
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/
%G ru
%F TRSPY_2023_322_a21
M. E. Eglit; Yu. A. Drozdova; I. N. Usachev; A. V. Drozdov. Flows of Liquids with a Yield Strength in Pipes under a Pulsating Pressure Drop. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 282-295. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a21/

[1] Abbas Z., Shabbir M.S., Ali N., “Analysis of rheological properties of Herschel–Bulkley fluid for pulsating flow of blood in $\omega $-shaped stenosed artery”, AIP Adv., 7:10 (2017), 105123 | DOI

[2] Barnes H.A., “Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids”, J. Rheol., 33:2 (1989), 329–366 | DOI

[3] Barnes H.A., Townsend P., Walters K., “Flow of non-Newtonian liquids under a varying pressure gradient”, Nature, 224:5219 (1969), 585–587 | DOI

[4] Barnes H.A., Townsend P., Walters K., “On pulsatile flow of non-Newtonian liquids”, Rheol. acta, 10:4 (1971), 517–527 | DOI

[5] Bessonov N., Sequeira A., Simakov S., Vassilevskii Yu., Volpert V., “Methods of blood flow modelling”, Math. Model. Nat. Phenom., 11:1 (2016), 1–25 | DOI | MR | Zbl

[6] Çarpinlioǧlu M.Ö., Gündoǧdu M.Y., “A critical review on pulsatile pipe flow studies directing towards future research topics”, Flow Meas. Instrum., 12:3 (2001), 163–174 | DOI

[7] Carvalho V., Pinho D., Lima R.A., Teixeira J.C., Teixeira S., “Blood flow modeling in coronary arteries: A review”, Fluids, 6:2 (2021), 53 | DOI | MR

[8] Daprà I., Scarpi G., “Pulsatile poiseuille flow of a viscoplastic fluid in the gap between coaxial cylinders”, J. Fluids Eng., 133:8 (2011), 081203 | DOI

[9] David J., Filip P., Kharlamov A.A., “Empirical modelling of nonmonotonous behaviour of shear viscosity”, Adv. Mater. Sci. Eng., 2013 (2013), 658187 | DOI

[10] Drozdova Yu.A., Eglit M.E., Yakubenko A.E., “Vliyanie pulsatsii davleniya na dinamiku potokov nenyutonovskikh zhidkostei v trubakh”, XII Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki: Sb. tr., v. 4, RITs BashGU, Ufa, 2019, 343–344

[11] Edwards M.F., Nellist D.A., Wilkinson W.L., “Unsteady, laminar flows of non-Newtonian fluids in pipes”, Chem. Eng. Sci., 27:2 (1972), 295–306 | DOI | MR

[12] Edwards M.F., Nellist D.A., Wilkinson W.L., “Pulsating flow on non-Newtonian fluids in pipes”, Chem. Eng. Sci., 27:3 (1972), 545–553 | DOI | MR

[13] Eglit M.E., Yakubenko A.E., “Numerical modeling of slope flows entraining bottom material”, Cold Reg. Sci. Technol., 108 (2014), 139–148 | DOI

[14] Herschel W.H., Bulkley R., “Konsistenzmessungen von Gummi-Benzollösungen”, Kolloid-Z., 39:4 (1926), 291–300 | DOI

[15] Kajiuchi T., Saito A., “Flow enhancement of laminar pulsating flow of Bingham plastic fluids”, J. Chem. Eng. Japan, 17:1 (1984), 34–38 | DOI

[16] Konan N.A., Rosenbaum E., Massoudi M., “On the response of a Herschel–Bulkley fluid due to a moving plate”, Polymers, 14:18 (2022), 3890 | DOI

[17] Morris J.F., “Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena”, Annu. Rev. Fluid Mech., 52 (2020), 121–144 | DOI | MR | Zbl

[18] Nakamura M., Sawada T., “Numerical study on the laminar pulsatile flow of slurries”, J. Non-Newton. Fluid Mech., 22:2 (1987), 191–206 | DOI

[19] Pan Z., de Cagny H., Weber B., Bonn D., “$\mathrm {S}$-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology”, Phys. Rev. E, 92:3 (2015), 032202 | DOI

[20] Papanastasiou T.C., “Flows of materials with yield”, J. Rheol., 31:5 (1987), 385–404 | DOI | Zbl

[21] Papanastasiou T.C., Boudouvis A.G., “Flows of viscoplastic materials: Models and computations”, Comput. Struct., 64:1–4 (1997), 677–694 | DOI | Zbl

[22] Phan-Thien N., Dudek J., “Pulsating flow of a plastic fluid”, Nature, 296:5860 (1982), 843–844 | DOI

[23] Roberts G.P., Barnes H.A., Carew P., “Modelling the flow behaviour of very shear-thinning liquids”, Chem. Eng. Sci., 56:19 (2001), 5617–5623 | DOI

[24] Sankar D.S., Hemalatha K., “Pulsatile flow of Herschel–Bulkley fluid through stenosed arteries—A mathematical model”, Int. J. Non-linear Mech., 41:8 (2006), 979–990 | DOI | Zbl

[25] Valencia A., Zaratea A., Galvez M., Badilla L., “Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm”, Int. J. Numer. Methods Fluids, 50:6 (2006), 751–764 | DOI | Zbl

[26] Womersley J.R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known”, J. Physiol., 127:3 (1955), 553–563 | DOI

[27] Yilmaz F., Gundogdu M.Y., “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions”, Korea–Aust. Rheol. J., 20:4 (2008), 197–211