Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a20, author = {V. A. Shargatov and A. P. Chugainova and A. M. Tomasheva}, title = {Structures of {Classical} and {Special} {Discontinuities} for the {Generalized} {Korteweg--de} {Vries--Burgers} {Equation} in the {Case} of a {Flux} {Function} with {Four} {Inflection} {Points}}, journal = {Informatics and Automation}, pages = {266--281}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a20/} }
TY - JOUR AU - V. A. Shargatov AU - A. P. Chugainova AU - A. M. Tomasheva TI - Structures of Classical and Special Discontinuities for the Generalized Korteweg--de Vries--Burgers Equation in the Case of a Flux Function with Four Inflection Points JO - Informatics and Automation PY - 2023 SP - 266 EP - 281 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a20/ LA - ru ID - TRSPY_2023_322_a20 ER -
%0 Journal Article %A V. A. Shargatov %A A. P. Chugainova %A A. M. Tomasheva %T Structures of Classical and Special Discontinuities for the Generalized Korteweg--de Vries--Burgers Equation in the Case of a Flux Function with Four Inflection Points %J Informatics and Automation %D 2023 %P 266-281 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a20/ %G ru %F TRSPY_2023_322_a20
V. A. Shargatov; A. P. Chugainova; A. M. Tomasheva. Structures of Classical and Special Discontinuities for the Generalized Korteweg--de Vries--Burgers Equation in the Case of a Flux Function with Four Inflection Points. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 266-281. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a20/
[1] I. B. Bakholdin, “The structure of evolutional jumps in reversible systems”, J. Appl. Math. Mech., 63:1 (1999), 45–53 | DOI | MR | Zbl
[2] I. B. Bakholdin, “Jumps in models described by generalized Korteweg–de Vries equations”, Fluid Dyn., 34:4 (1999), 534–545 | MR | Zbl
[3] Bakholdin I.B., Bezdissipativnye razryvy v mekhanike sploshnoi sredy, Fizmatlit, M., 2004
[4] I. B. Bakholdin, “Time-invariant and time-varying discontinuity structures for models described by the generalized Korteweg–Burgers equation”, J. Appl. Math. Mech., 75:2 (2011), 189–209 | DOI | MR | Zbl
[5] I. B. Bakholdin, “Theory and classification of the reversible structures of discontinuities in hydrodynamic-type models”, J. Appl. Math. Mech., 78:6 (2014), 599–612 | DOI | MR | Zbl
[6] Bona J.L., Schonbeck M.E., “Travelling-wave solutions to the Korteweg–de Vries–Burgers equation”, Proc. R. Soc. Edinburgh A, 101:3–4 (1985), 207–226 | DOI | MR | Zbl
[7] Chugainova A.P., Il'ichev A.T., Kulikovskii A.G., Shargatov V.A., “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | MR | Zbl
[8] Chugainova A.P., Kolomiytsev G.V., Shargatov V.A., “On the instability of monotone traveling-wave solutions for a generalized Korteweg–de Vries–Burgers equation”, Russ. J. Math. Phys., 29:3 (2022), 342–357 | DOI | MR | Zbl
[9] A. P. Chugainova and V. A. Shargatov, “Stability of nonstationary solutions of the generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 55:2 (2015), 251–263 | DOI | MR | Zbl
[10] Chugainova A.P., Shargatov V.A., “Traveling waves and undercompressive shocks in solutions of the generalized Korteweg–de Vries–Burgers equation with a time-dependent dissipation coefficient distribution”, Eur. Phys. J. Plus, 135:8 (2020), 635 | DOI
[11] El G.A., Hoefer M.A., Shearer M., “Dispersive and diffusive–dispersive shock waves for nonconvex conservation laws”, SIAM Rev., 59:1 (2017), 3–61 | DOI | MR | Zbl
[12] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Am. Math. Soc. Transl., Ser. 2, 29 (1963), 295–381 | MR | MR | Zbl | Zbl
[13] Grad H., Hu P.N., “Unified shock profile in a plasma”, Phys. Fluids, 10:12 (1967), 2596–2602 | DOI
[14] Hayes B., Shearer M., “Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes”, Proc. R. Soc. Edinburgh A, 129:4 (1999), 733–754 | DOI | MR | Zbl
[15] Hayes B.T., Shearer M., “A nonconvex scalar conservation law with trilinear flux”, Q. Appl. Math., 59:4 (2001), 615–635 | DOI | MR | Zbl
[16] A. P. Il'Ichev and A. T. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Proc. Steklov Inst. Math., 295 (2016), 148–157 | DOI | DOI | MR | Zbl
[17] A. T. Il'ichev, A. P. Chugainova, and V. A. Shargatov, “Spectral stability of special discontinuities”, Dokl. Math., 91:3 (2015), 347–351 | DOI | MR | Zbl
[18] Jacobs D., McKinney B., Shearer M., “Travelling wave solutions of the modified Korteweg–de Vries–Burgers equation”, J. Diff. Eqns., 116:2 (1995), 448–467 | DOI | MR | Zbl
[19] Johnson R.S., “A non-linear equation incorporating damping and dispersion”, J. Fluid Mech., 42:1 (1970), 49–60 | DOI | MR | Zbl
[20] A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities”, Sov. Phys., Dokl., 29:4 (1984), 283–285 | MR
[21] A. G. Kulikovskii, “Strong discontinuities in flows of continuous media, and their structure”, Proc. Steklov Inst. Math., 182 (1990), 285–317 | MR
[22] A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl
[23] A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russ. Math. Surv., 63:2 (2008), 283–350 | DOI | DOI | MR | Zbl
[24] A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl
[25] Lax P.D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[26] LeFloch P.G., Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves, Birkhäuser, Basel, 2002 | MR | Zbl
[27] LeFloch P.G., Shearer M., “Nonclassical Riemann solvers with nucleation”, Proc. R. Soc. Edinburgh A, 134:5 (2004), 961–984 | DOI | MR | Zbl
[28] Lyapidevskii V.Yu., Teshukov V.M., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000
[29] Pego R.L., Smereka P., Weinstein M.I., “Oscillatory instability of traveling waves for a KdV–Burgers equation”, Physica D, 67:1–3 (1993), 45–65 | DOI | MR | Zbl
[30] Pego R.L., Weinstein M.I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. R. Soc. London A, 340:1656 (1992), 47–94 | DOI | MR | Zbl
[31] B. L. Rozhdestvenskii, “Discontinuous solutions of hyperbolic systems of quasilinear equations”, Russ. Math. Surv., 15:6 (1960), 53–111 | DOI | MR | Zbl
[32] A. V. Samokhin, “Reflection and refraction of solitons by the KdV–Burgers equation in nonhomogeneous dissipative media”, Theor. Math. Phys., 197:1 (2018), 1527–1533 | DOI | DOI | MR | Zbl
[33] Samokhin A., “The KdV soliton crosses a dissipative and dispersive border”, Diff. Geom. Appl., 75 (2021), 101723 | DOI | MR | Zbl
[34] Shargatov V.A., Chugainova A.P., “Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter”, J. Comput. Appl. Math., 397 (2021), 113654 | DOI | MR | Zbl
[35] Shargatov V.A., Chugainova A.P., Kolomiytsev G.V., “Global stability of traveling wave solutions of generalized Korteweg–de Vries–Burgers equation with non-constant dissipation parameter”, J. Comput. Appl. Math., 412 (2022), 114354 | DOI | MR | Zbl