Periodic and Solitary Waves and Nondissipative Discontinuity Structures in Electromagnetic Hydrodynamics in the Case of Wave Resonance
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method is described for studying periodic waves, solitary waves, and nondissipative discontinuity structures for the equations of electromagnetic hydrodynamics. The arrangement of branches of periodic solutions is analyzed. Solitary waves are obtained as limiting solutions of sequences of periodic waves, and nondissipative discontinuity structures are obtained as the limits of sequences of solitary waves. It is shown that a discontinuity of the long-wave branch of fast magnetosonic waves does not correlate with the existence of a transition to the short-wave branch, which leads to the emergence of chaotic solutions in the absence of dissipation. The study of slow magnetosonic waves has shown that for small and moderate amplitudes there exists a solution close to a solitary wave. Approximate solitary waves of hybrid type are revealed that represent combinations of an Alfvén and a slow magnetosonic wave.
Keywords: electromagnetic hydrodynamics, nonlinearity, periodic wave, solitary wave.
Mots-clés : dispersion
@article{TRSPY_2023_322_a2,
     author = {I. B. Bakholdin},
     title = {Periodic and {Solitary} {Waves} and {Nondissipative} {Discontinuity} {Structures} in {Electromagnetic} {Hydrodynamics} in the {Case} of {Wave} {Resonance}},
     journal = {Informatics and Automation},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a2/}
}
TY  - JOUR
AU  - I. B. Bakholdin
TI  - Periodic and Solitary Waves and Nondissipative Discontinuity Structures in Electromagnetic Hydrodynamics in the Case of Wave Resonance
JO  - Informatics and Automation
PY  - 2023
SP  - 24
EP  - 37
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a2/
LA  - ru
ID  - TRSPY_2023_322_a2
ER  - 
%0 Journal Article
%A I. B. Bakholdin
%T Periodic and Solitary Waves and Nondissipative Discontinuity Structures in Electromagnetic Hydrodynamics in the Case of Wave Resonance
%J Informatics and Automation
%D 2023
%P 24-37
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a2/
%G ru
%F TRSPY_2023_322_a2
I. B. Bakholdin. Periodic and Solitary Waves and Nondissipative Discontinuity Structures in Electromagnetic Hydrodynamics in the Case of Wave Resonance. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 24-37. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a2/

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts Math., 60, Springer, New York, 1978 | DOI | MR | MR | Zbl

[2] Bakholdin I.B., Bezdissipativnye razryvy v mekhanike sploshnoi sredy, Fizmatlit, M., 2004

[3] I. B. Bakholdin, “Time-invariant and time-varying discontinuity structures for models described by the generalized Korteweg–Burgers equation”, J. Appl. Math. Mech., 75:2 (2011), 189–209 | DOI | MR | Zbl

[4] I. B. Bakholdin, “Theory and classification of the reversible structures of discontinuities in hydrodynamic-type models”, J. Appl. Math. Mech., 78:6 (2014), 599–612 | DOI | MR | Zbl

[5] I. B. Bakholdin, “Analysis of two-fluid plasma in the electromagnetic hydrodynamics approximation and discontinuous structures in their solutions”, Comput. Math. Math. Phys., 61:3 (2021), 436–452 | DOI | MR | Zbl

[6] I. B. Bakholdin, “Nondissipative discontinuity structures and solitary waves in solutions to equations of two-fluid plasma in the electromagnetic hydrodynamics approximation”, Comput. Math. Math. Phys., 62:12 (2022), 2139–2153 | DOI | MR | Zbl

[7] Bakholdin I.B., Ilichev A.T., “Fast magnetosonic solitonic structures in a quasi-neutral collision-free finite-beta plasma”, Wave Motion, 112 (2022), 102936 | DOI | MR

[8] Gavrikov M.B., Dvukhzhidkostnaya elektromagnitnaya gidrodinamika, KRASAND, M., 2018

[9] Il'ichev A., “Steady waves in a cold plasma”, J. Plasma Phys., 55:2 (1996), 181–194 | DOI

[10] Il'ichev A.T., “Solitary wave trains in a cold plasma”, Fluid Dyn., 31:5 (1996), 754–760 | DOI

[11] Ilichev A.T., Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003

[12] Kakutani T., Ono H., “Weak non-linear hydromagnetic waves in a cold collision-free plasma”, J. Phys. Soc. Japan, 26:5 (1969), 1305–1318 | DOI | MR

[13] Kakutani T., Ono H., Taniuti T., Wei C.-C., “Reductive perturbation method in nonlinear wave propagation. II: Application to hydromagnetic waves in cold plasma”, J. Phys. Soc. Japan, 24:5 (1968), 1159–1166 | DOI | MR

[14] Keramidas Charidakos I., Lingam M., Morrison P.J., White R.L., Wurm A., “Action principles for extended magnetohydrodynamic models”, Phys. Plasmas, 21:9 (2014), 092118 | DOI

[15] Kimura K., Morrison P.J., “On energy conservation in extended magnetohydrodynamics”, Phys. Plasmas, 21:8 (2014), 082101 | DOI

[16] A. G. Kulikovskii, “On the stability of homogeneous states”, J. Appl. Math. Mech., 30:1 (1966), 180–187 | DOI | MR

[17] A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MA, 1965

[18] Kulikovskii A.G., Sveshnikova E.I., Chugainova A.P., Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, Lekts. kursy NOTs, 16, MIAN, M., 2010 | DOI

[19] Lombardi E., “Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves”, Arch. Ration. Mech. Anal., 137:3 (1997), 227–304 | DOI | MR | Zbl

[20] S. I. Vainshtein, A. M. Bykov, and I. N. Toptygin, Turbulence, Current Sheets, and Shocks in Cosmic Plasma, Gordon and Breach, Yverdon, 1993