A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 195-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a topological–analytical method for proving some results of the N. N. Bogolyubov averaging method for the case of an infinite time interval. The essence of the method is to combine topological methods of proving the existence of a periodic solution applied to the averaged system with Bogolyubov's theorem on the averaging on a finite time interval. The proposed approach allows us to dispense with the nondegeneracy condition for the Jacobi matrix from the classical theorems of the averaging method.
Keywords: averaging, averaging on an infinite interval, degenerate case, asymptotic stability, elliptic fixed point, center.
@article{TRSPY_2023_322_a15,
     author = {Ivan Yu. Polekhin},
     title = {A {Topological--Analytical} {Method} for {Proving} {Averaging} {Theorems} on an {Infinite} {Time} {Interval} in a {Degenerate} {Case}},
     journal = {Informatics and Automation},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/}
}
TY  - JOUR
AU  - Ivan Yu. Polekhin
TI  - A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case
JO  - Informatics and Automation
PY  - 2023
SP  - 195
EP  - 205
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/
LA  - ru
ID  - TRSPY_2023_322_a15
ER  - 
%0 Journal Article
%A Ivan Yu. Polekhin
%T A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case
%J Informatics and Automation
%D 2023
%P 195-205
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/
%G ru
%F TRSPY_2023_322_a15
Ivan Yu. Polekhin. A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 195-205. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl

[2] Bogolyubov N.N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945 | MR

[3] Bogolyubov N.N., “Teoriya vozmuschenii v nelineinoi mekhanike”, Sb. tr. In-ta stroitelnoi mekhaniki AN USSR, v. 14, Izd-vo AN USSR, Kiev, 1950, 9–34

[4] N. N. Bogoliubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl

[5] Burd V., Method of averaging for differential equations on an infinite interval: Theory and applications, Lect. Notes Pure Appl. Math., 255, Chapman and Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[6] Hirsch M.W., Differential topology, Grad. Texts Math., 33, Springer, New York, 2012 | MR

[7] Kapitsa P.L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, ZhETF, 21:5 (1951), 588–597 | MR

[8] N. N. Krasovskii, Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, CA, 1963 | MR

[9] Murdock J.A., Perturbations: Theory and methods, Class. Appl. Math., 27, SIAM, Philadelphia, PA, 1999 | MR | Zbl

[10] Nayfeh A.H., Perturbation methods, Wiley-VCH, Weinheim, 2008 | MR

[11] Polekhin I., “Topological considerations and the method of averaging: A connection between local and global results”, Int. Conf. Nonlinearity, Information and Robotics (NIR) (Innopolis, 2020), IEEE, 2020, 124–127

[12] Polekhin I.Yu., “The method of averaging for the Kapitza–Whitney pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 | DOI | MR | Zbl

[13] Polekhin I.Yu., “The spherical Kapitza–Whitney pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76 | DOI | MR | Zbl

[14] Sanders J.A., Verhulst F., Murdock J., Averaging methods in nonlinear dynamical systems, Appl. Math. Sci., 59, Springer, New York, 2007 | MR | Zbl

[15] Srzednicki R., “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations”, Nonlinear Anal., Theory Methods Appl., 22:6 (1994), 707–737 | DOI | MR | Zbl

[16] Srzednicki R., “Wazewski method and Conley index”, Handbook of differential equations: Ordinary differential equations, v. 1, Elsevier, Amsterdam, 2004, 591–684 | DOI | MR | Zbl

[17] Wilson F.W., Jr., “The structure of the level surfaces of a Lyapunov function”, J. Diff. Eqns., 3 (1967), 323–329 | DOI | MR | Zbl

[18] Zhuravlev V.F., Klimov D.M., Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR