Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a15, author = {Ivan Yu. Polekhin}, title = {A {Topological--Analytical} {Method} for {Proving} {Averaging} {Theorems} on an {Infinite} {Time} {Interval} in a {Degenerate} {Case}}, journal = {Informatics and Automation}, pages = {195--205}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/} }
TY - JOUR AU - Ivan Yu. Polekhin TI - A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case JO - Informatics and Automation PY - 2023 SP - 195 EP - 205 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/ LA - ru ID - TRSPY_2023_322_a15 ER -
%0 Journal Article %A Ivan Yu. Polekhin %T A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case %J Informatics and Automation %D 2023 %P 195-205 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/ %G ru %F TRSPY_2023_322_a15
Ivan Yu. Polekhin. A Topological--Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 195-205. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a15/
[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encycl. Math. Sci., 3, Springer, Berlin, 2006 | MR | Zbl
[2] Bogolyubov N.N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945 | MR
[3] Bogolyubov N.N., “Teoriya vozmuschenii v nelineinoi mekhanike”, Sb. tr. In-ta stroitelnoi mekhaniki AN USSR, v. 14, Izd-vo AN USSR, Kiev, 1950, 9–34
[4] N. N. Bogoliubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl
[5] Burd V., Method of averaging for differential equations on an infinite interval: Theory and applications, Lect. Notes Pure Appl. Math., 255, Chapman and Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl
[6] Hirsch M.W., Differential topology, Grad. Texts Math., 33, Springer, New York, 2012 | MR
[7] Kapitsa P.L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, ZhETF, 21:5 (1951), 588–597 | MR
[8] N. N. Krasovskii, Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, CA, 1963 | MR
[9] Murdock J.A., Perturbations: Theory and methods, Class. Appl. Math., 27, SIAM, Philadelphia, PA, 1999 | MR | Zbl
[10] Nayfeh A.H., Perturbation methods, Wiley-VCH, Weinheim, 2008 | MR
[11] Polekhin I., “Topological considerations and the method of averaging: A connection between local and global results”, Int. Conf. Nonlinearity, Information and Robotics (NIR) (Innopolis, 2020), IEEE, 2020, 124–127
[12] Polekhin I.Yu., “The method of averaging for the Kapitza–Whitney pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 | DOI | MR | Zbl
[13] Polekhin I.Yu., “The spherical Kapitza–Whitney pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76 | DOI | MR | Zbl
[14] Sanders J.A., Verhulst F., Murdock J., Averaging methods in nonlinear dynamical systems, Appl. Math. Sci., 59, Springer, New York, 2007 | MR | Zbl
[15] Srzednicki R., “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations”, Nonlinear Anal., Theory Methods Appl., 22:6 (1994), 707–737 | DOI | MR | Zbl
[16] Srzednicki R., “Wazewski method and Conley index”, Handbook of differential equations: Ordinary differential equations, v. 1, Elsevier, Amsterdam, 2004, 591–684 | DOI | MR | Zbl
[17] Wilson F.W., Jr., “The structure of the level surfaces of a Lyapunov function”, J. Diff. Eqns., 3 (1967), 323–329 | DOI | MR | Zbl
[18] Zhuravlev V.F., Klimov D.M., Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR