Exact Solutions of Second-Grade Fluid Equations
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 180-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second-grade fluid equations describe the motion of relaxing fluids such as aqueous solutions of polymers. The existence and uniqueness of solutions to the initial–boundary value problems for these equations were studied by D. Cioranescu, V. Girault, C. Le Roux, A. Tani, G. P. Galdi, and others. However, their studies do not contain information about the qualitative properties of solutions of these equations. Such information can be obtained by analyzing their exact solutions, which is the main goal of this work. We study layered flows and a model problem with a free boundary, construct an analog of T. Kármán's solution, which describes the stationary motion of a second-grade fluid in a half-space induced by the rotation of the plane bounding it, and propose a generalization of V. A. Steklov's solution of the problem on unsteady helical flows of a Newtonian fluid to the case of a second-grade fluid.
Keywords: second-grade fluid, free boundary problems, layered flows, boundary layer, helical motions.
@article{TRSPY_2023_322_a14,
     author = {A. G. Petrova and V. V. Pukhnachev and O. A. Frolovskaya},
     title = {Exact {Solutions} of {Second-Grade} {Fluid} {Equations}},
     journal = {Informatics and Automation},
     pages = {180--194},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/}
}
TY  - JOUR
AU  - A. G. Petrova
AU  - V. V. Pukhnachev
AU  - O. A. Frolovskaya
TI  - Exact Solutions of Second-Grade Fluid Equations
JO  - Informatics and Automation
PY  - 2023
SP  - 180
EP  - 194
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/
LA  - ru
ID  - TRSPY_2023_322_a14
ER  - 
%0 Journal Article
%A A. G. Petrova
%A V. V. Pukhnachev
%A O. A. Frolovskaya
%T Exact Solutions of Second-Grade Fluid Equations
%J Informatics and Automation
%D 2023
%P 180-194
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/
%G ru
%F TRSPY_2023_322_a14
A. G. Petrova; V. V. Pukhnachev; O. A. Frolovskaya. Exact Solutions of Second-Grade Fluid Equations. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 180-194. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/

[1] Beltrami E., “Considerazioni idrodinamiche”, Nuovo Cimento. Ser. 3, 25 (1889), 212–222 | DOI

[2] Bogoyavlenskij O.I., “Method of symmetry transforms for ideal MHD equilibrium equations”, The legacy of the inverse scattering transform in applied mathematics: Proc. AMS–IMS–SIAM Joint Summer Res. Conf. (South Hadley, MA, 2001), Contemp. Math., 301, Amer. Math. Soc., Providence, RI, 2002, 195–218 | DOI | MR | Zbl

[3] Bogoyavlenskij O.I., “Exact solutions to the Navier–Stokes equations”, C. r. math. Acad. sci. Soc. r. Canada, 24:4 (2002), 138–143 | MR | Zbl

[4] Bogoyavlenskij O.I., “Exact unsteady solutions to the Navier–Stokes and viscous MHD equations”, Phys. Lett. A, 307:5–6 (2003), 281–286 | DOI | MR | Zbl

[5] Cioranescu D., Girault V., “Weak and classical solutions of a family of second grade fluids”, Int. J. Non-Linear Mech., 32:2 (1997), 317–335 | DOI | MR | Zbl

[6] Dunn J.E., Fosdick R.L., “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade”, Arch. Ration. Mech. Anal., 56:3 (1974), 191–252 | DOI | MR | Zbl

[7] Fosdick R.L., Rajagopal K.R., “Anomalous features in the model of “second order fluids””, Arch. Ration. Mech. Anal., 70:2 (1979), 145–152 | DOI | MR | Zbl

[8] Frolovskaya O.A., Pukhnachev V.V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10:6 (2018), 684 | DOI | MR

[9] Frolovskaya O.A., Pukhnachev V.V., “The problem of filling a spherical cavity in an aqueous solution of polymers”, Polymers, 14:20 (2022), 4259 | DOI

[10] Galdi G.P., “Mathematical theory of second-grade fluids”, Stability and wave propagation in fluids and solids, ed. by G. P. Galdi, Springer, Wien, 1995, 67–104 | DOI | MR | Zbl

[11] Gromeka I.S., Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti, Uchen. zap. Kazan. un-ta{;} Kn. III, Kazan, 1881; Собрание сочинений, Изд-во АН СССР, М., 1952, 76–148

[12] Von Kármán T., “Über laminare und turbulente Reibung”, Z. angew. Math. Mech., 1 (1921), 233–252 | DOI

[13] Le Roux C., “Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions”, Arch. Ration. Mech. Anal., 148:4 (1979), 309–356 | DOI | MR

[14] S. V. Meleshko and V. V. Pukhnachev, “One class of partially invariant solutions of the Navier–Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl

[15] V. V. Pukhnachev, “Invariant solutions of the Navier–Stokes equations describing motions with a free boundary”, Sov. Phys., Dokl., 17 (1972), 24–27 | Zbl

[16] Pukhnachev V.V., “Effectively one-dimensional free boundary problems for the Navier–Stokes equations”, Analysis and approximation of boundary value problems: A memorial meeting dedicated to Prof. Valery Rivkind (Jyväskylä, 1998), Univ. Jyväskylä, Jyväskylä, 2000, 153–164

[17] Rivlin R.S., Ericksen J.L., “Stress-deformation relations for isotropic materials”, Arch. Ration. Mech. Anal., 4 (1955), 323–425 | MR | Zbl

[18] H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 1979 | MR | Zbl

[19] Steklov V.A., “Odin sluchai dvizheniya vyazkoi neszhimaemoi zhidkosti”, Soobsch. Khark. mat. o-va. Ser. 2, 5 (1896), 101–124 | MR

[20] Tani A., Le Roux C., “Steady-state solutions to the equations of motion of second-grade fluids with general Navier type slip boundary conditions in Hölder spaces”, J. Math. Sci., 130:4 (2005), 4899–4909 | DOI | MR | Zbl

[21] Trkal V., “Poznámka k hydrodynamice vazkých tekutin”, Čas. pěstování mat. fis., 48:5 (1919), 302–311

[22] Truesdell C., Noll W., The non-linear field theories of mechanics, Encycl. Phys., III/3, Springer, Berlin, 1965 | MR

[23] Vasilev O.F., Osnovy mekhaniki vintovykh i tsirkulyatsionnykh potokov, Gosenergoizdat, M.; L., 1958