Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a14, author = {A. G. Petrova and V. V. Pukhnachev and O. A. Frolovskaya}, title = {Exact {Solutions} of {Second-Grade} {Fluid} {Equations}}, journal = {Informatics and Automation}, pages = {180--194}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/} }
TY - JOUR AU - A. G. Petrova AU - V. V. Pukhnachev AU - O. A. Frolovskaya TI - Exact Solutions of Second-Grade Fluid Equations JO - Informatics and Automation PY - 2023 SP - 180 EP - 194 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/ LA - ru ID - TRSPY_2023_322_a14 ER -
A. G. Petrova; V. V. Pukhnachev; O. A. Frolovskaya. Exact Solutions of Second-Grade Fluid Equations. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 180-194. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a14/
[1] Beltrami E., “Considerazioni idrodinamiche”, Nuovo Cimento. Ser. 3, 25 (1889), 212–222 | DOI
[2] Bogoyavlenskij O.I., “Method of symmetry transforms for ideal MHD equilibrium equations”, The legacy of the inverse scattering transform in applied mathematics: Proc. AMS–IMS–SIAM Joint Summer Res. Conf. (South Hadley, MA, 2001), Contemp. Math., 301, Amer. Math. Soc., Providence, RI, 2002, 195–218 | DOI | MR | Zbl
[3] Bogoyavlenskij O.I., “Exact solutions to the Navier–Stokes equations”, C. r. math. Acad. sci. Soc. r. Canada, 24:4 (2002), 138–143 | MR | Zbl
[4] Bogoyavlenskij O.I., “Exact unsteady solutions to the Navier–Stokes and viscous MHD equations”, Phys. Lett. A, 307:5–6 (2003), 281–286 | DOI | MR | Zbl
[5] Cioranescu D., Girault V., “Weak and classical solutions of a family of second grade fluids”, Int. J. Non-Linear Mech., 32:2 (1997), 317–335 | DOI | MR | Zbl
[6] Dunn J.E., Fosdick R.L., “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade”, Arch. Ration. Mech. Anal., 56:3 (1974), 191–252 | DOI | MR | Zbl
[7] Fosdick R.L., Rajagopal K.R., “Anomalous features in the model of “second order fluids””, Arch. Ration. Mech. Anal., 70:2 (1979), 145–152 | DOI | MR | Zbl
[8] Frolovskaya O.A., Pukhnachev V.V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10:6 (2018), 684 | DOI | MR
[9] Frolovskaya O.A., Pukhnachev V.V., “The problem of filling a spherical cavity in an aqueous solution of polymers”, Polymers, 14:20 (2022), 4259 | DOI
[10] Galdi G.P., “Mathematical theory of second-grade fluids”, Stability and wave propagation in fluids and solids, ed. by G. P. Galdi, Springer, Wien, 1995, 67–104 | DOI | MR | Zbl
[11] Gromeka I.S., Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti, Uchen. zap. Kazan. un-ta{;} Kn. III, Kazan, 1881; Собрание сочинений, Изд-во АН СССР, М., 1952, 76–148
[12] Von Kármán T., “Über laminare und turbulente Reibung”, Z. angew. Math. Mech., 1 (1921), 233–252 | DOI
[13] Le Roux C., “Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions”, Arch. Ration. Mech. Anal., 148:4 (1979), 309–356 | DOI | MR
[14] S. V. Meleshko and V. V. Pukhnachev, “One class of partially invariant solutions of the Navier–Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl
[15] V. V. Pukhnachev, “Invariant solutions of the Navier–Stokes equations describing motions with a free boundary”, Sov. Phys., Dokl., 17 (1972), 24–27 | Zbl
[16] Pukhnachev V.V., “Effectively one-dimensional free boundary problems for the Navier–Stokes equations”, Analysis and approximation of boundary value problems: A memorial meeting dedicated to Prof. Valery Rivkind (Jyväskylä, 1998), Univ. Jyväskylä, Jyväskylä, 2000, 153–164
[17] Rivlin R.S., Ericksen J.L., “Stress-deformation relations for isotropic materials”, Arch. Ration. Mech. Anal., 4 (1955), 323–425 | MR | Zbl
[18] H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 1979 | MR | Zbl
[19] Steklov V.A., “Odin sluchai dvizheniya vyazkoi neszhimaemoi zhidkosti”, Soobsch. Khark. mat. o-va. Ser. 2, 5 (1896), 101–124 | MR
[20] Tani A., Le Roux C., “Steady-state solutions to the equations of motion of second-grade fluids with general Navier type slip boundary conditions in Hölder spaces”, J. Math. Sci., 130:4 (2005), 4899–4909 | DOI | MR | Zbl
[21] Trkal V., “Poznámka k hydrodynamice vazkých tekutin”, Čas. pěstování mat. fis., 48:5 (1919), 302–311
[22] Truesdell C., Noll W., The non-linear field theories of mechanics, Encycl. Phys., III/3, Springer, Berlin, 1965 | MR
[23] Vasilev O.F., Osnovy mekhaniki vintovykh i tsirkulyatsionnykh potokov, Gosenergoizdat, M.; L., 1958