Equilibrium Model of Density Flow
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 167-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The flow of a stratified fluid over a slope is considered. In the one-layer shallow water approximation, a mathematical model is constructed for a turbulent flow of a denser fluid over a uniform slope, with the entrainment of the ambient fluid at rest and the sediment entrainment at the wave front taken into account. The main focus is on analyzing the structure of a self-sustaining wave (underwater avalanche) and on estimating its propagation velocity. The mathematical model arises from the equilibrium conditions in a more complete three-parameter model and contains only one numerical parameter that represents a combination of the parameters of the original model characterizing the slope, vortex energy dissipation rate, and entrainment rate. The structure of traveling waves is studied, exact self-similar solutions are constructed, and transition of the flow to a self-similar regime is analyzed numerically. It is shown that depending on the thickness and initial density of the sediment layer, self-similar solutions have different structures and front propagation velocities.
Keywords: density flows, underwater avalanches, first-order shallow water approximation, mixing, sediment entrainment, front velocity.
@article{TRSPY_2023_322_a13,
     author = {V. Yu. Liapidevskii},
     title = {Equilibrium {Model} of {Density} {Flow}},
     journal = {Informatics and Automation},
     pages = {167--179},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a13/}
}
TY  - JOUR
AU  - V. Yu. Liapidevskii
TI  - Equilibrium Model of Density Flow
JO  - Informatics and Automation
PY  - 2023
SP  - 167
EP  - 179
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a13/
LA  - ru
ID  - TRSPY_2023_322_a13
ER  - 
%0 Journal Article
%A V. Yu. Liapidevskii
%T Equilibrium Model of Density Flow
%J Informatics and Automation
%D 2023
%P 167-179
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a13/
%G ru
%F TRSPY_2023_322_a13
V. Yu. Liapidevskii. Equilibrium Model of Density Flow. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 167-179. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a13/

[1] Eglit M., Yakubenko A., Zayko J., “A review of Russian snow avalanche models—From analytical solutions to novel 3D models”, Geosciences, 10:2 (2020), 77 | DOI

[2] Gauer P., Issler D., Lied K., Kristensen K., Sandersen F., “On snow avalanche flow regimes: Inferences from observations and measurements”, ISSW 2008: A merging of theory and practice: Proc. Whistler 2008 Int. Snow Sci. Workshop, Whistler, 2008, 717–723

[3] Heerema C.J. et al., “What determines the downstream evolution of turbidity currents?”, Earth Planet. Sci. Lett., 532 (2020), 116023 | DOI

[4] Kulikovskii A.G., Sveshnikova E.I., “Model dlya rascheta dvizheniya pylevoi snezhnoi laviny”, Mater. glyatsiol. issled., 31 (1977), 74–80

[5] Lax P.D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[6] V. Yu. Liapidevskii, “Mixing layer on the lee side of an obstacle”, J. Appl. Mech. Tech. Phys., 45:2 (2004), 199–203 | DOI | MR | Zbl

[7] Liapidevskii V.Yu., Dutykh D., “On the velocity of turbidity currents over moderate slopes”, Fluid Dyn. Res., 51:3 (2019), 035501 | DOI | MR

[8] Liapidevskii V.Yu., Dutykh D., Gisclon M., “On the modelling of shallow turbidity flows”, Adv. Water Resour., 113 (2018), 310–327 | DOI

[9] Meiburg E., Kneller B., “Turbidity currents and their deposits”, Annu. Rev. Fluid Mech., 42 (2010), 135–156 | DOI | Zbl

[10] Rastello M., Hopfinger E.J., “Sediment-entraining suspension clouds: A model of powder-snow avalanches”, J. Fluid Mech., 509 (2004), 181–206 | DOI | MR | Zbl

[11] Turnbull B., McElwaine J.N., “Experiments on the non-Boussinesq flow of self-igniting suspension currents on a steep open slope”, J. Geophys. Res.: Earth Surf., 113:F1 (2008), F01003

[12] Turnbull B., McElwaine J.N., Ancey C., “Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: Development and application”, J. Geophys. Res.: Earth Surf., 112:F1 (2007), F01004