On Linear Equations of Dynamics
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 133-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear autonomous systems of second-order differential equations that do not contain first derivatives of independent variables. Such systems are often encountered in classical mechanics. Of particular interest are cases where external forces are not potential. An important special case is given by the equations of nonholonomic mechanics linearized in the vicinity of equilibria of the second kind. We show that linear systems of this type can always be represented as Lagrange and Hamilton equations, and these equations are completely integrable: they admit complete sets of independent involutive integrals that are quadratic or linear in velocity. The linear integrals are Noetherian: they appear due to nontrivial symmetry groups.
Keywords: Frobenius theorem, Hamiltonian systems, complete integrability, Noetherian integrals, equilibria of the second kind, Chaplygin sleigh.
Mots-clés : Lagrange equations
@article{TRSPY_2023_322_a10,
     author = {V. V. Kozlov},
     title = {On {Linear} {Equations} of {Dynamics}},
     journal = {Informatics and Automation},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On Linear Equations of Dynamics
JO  - Informatics and Automation
PY  - 2023
SP  - 133
EP  - 145
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/
LA  - ru
ID  - TRSPY_2023_322_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On Linear Equations of Dynamics
%J Informatics and Automation
%D 2023
%P 133-145
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/
%G ru
%F TRSPY_2023_322_a10
V. V. Kozlov. On Linear Equations of Dynamics. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 133-145. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts Math., 60, Springer, New York, 2013 | MR | MR

[2] M. Berger, Geometry II, Springer, Berlin, 2009 | MR | Zbl

[3] Bosch A.J., “The factorization of a square matrix into two symmetric matrices”, Amer. Math. Mon., 93:6 (1986), 462–464 | DOI | MR | Zbl

[4] A. D. Bryuno, “The normal form of a Hamiltonian system”, Russ. Math. Surv., 43:1 (1988), 25–66 | DOI | MR | Zbl

[5] Frobenius G., “Über die mit einer Matrix vertauschbaren Matrizen”, Sitzungber. Preuss. Akad. Wiss., 1910, 3–15

[6] D. M. Galin, “Versal deformations of linear Hamiltonian systems”, Am. Math. Soc. Transl., Ser. 2,, 118 (1982), 1–12 | MR | Zbl | Zbl

[7] Kirillov O.N., Nonconservative stability problems of modern physics, De Gruyter Stud. Math. Phys., 14, de Gruyter, Berlin, 2013 | MR | Zbl

[8] Klingenberg W., “Paare symmetrischer und alternierender Formen zweiten Grades”, Abh. Math. Semin. Univ. Hamburg, 19 (1954), 78–93 | DOI | MR | Zbl

[9] Kocak H., “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl

[10] V. V. Kozlov, “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51:4 (1987), 420–426 | DOI | MR | Zbl

[11] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl

[12] Kozlov V.V., “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl

[13] V. V. Kozlov, “The stability of circulatory systems”, Dokl. Phys., 65:9 (2020), 323–325 | DOI | DOI

[14] V. V. Kozlov and A. A. Karapetyan, “On the stability degree”, Diff. Eqns., 41:2 (2005), 195–201 | MR | Zbl

[15] Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Transl. Math. Monogr., 33, Am. Math. Soc., Providence, RI, 1972 | MR | Zbl

[16] Williamson J., “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl

[17] Wintner A., “On the linear conservative dynamical systems”, Ann. Mat. Pura Appl. Ser. IV, 13 (1934), 105–112 | DOI | MR | Zbl

[18] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, v. 1, 2, J. Wiley Sons, New York, 1975 | MR | MR | Zbl