Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a10, author = {V. V. Kozlov}, title = {On {Linear} {Equations} of {Dynamics}}, journal = {Informatics and Automation}, pages = {133--145}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/} }
V. V. Kozlov. On Linear Equations of Dynamics. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 133-145. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a10/
[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts Math., 60, Springer, New York, 2013 | MR | MR
[2] M. Berger, Geometry II, Springer, Berlin, 2009 | MR | Zbl
[3] Bosch A.J., “The factorization of a square matrix into two symmetric matrices”, Amer. Math. Mon., 93:6 (1986), 462–464 | DOI | MR | Zbl
[4] A. D. Bryuno, “The normal form of a Hamiltonian system”, Russ. Math. Surv., 43:1 (1988), 25–66 | DOI | MR | Zbl
[5] Frobenius G., “Über die mit einer Matrix vertauschbaren Matrizen”, Sitzungber. Preuss. Akad. Wiss., 1910, 3–15
[6] D. M. Galin, “Versal deformations of linear Hamiltonian systems”, Am. Math. Soc. Transl., Ser. 2,, 118 (1982), 1–12 | MR | Zbl | Zbl
[7] Kirillov O.N., Nonconservative stability problems of modern physics, De Gruyter Stud. Math. Phys., 14, de Gruyter, Berlin, 2013 | MR | Zbl
[8] Klingenberg W., “Paare symmetrischer und alternierender Formen zweiten Grades”, Abh. Math. Semin. Univ. Hamburg, 19 (1954), 78–93 | DOI | MR | Zbl
[9] Kocak H., “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR | Zbl
[10] V. V. Kozlov, “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51:4 (1987), 420–426 | DOI | MR | Zbl
[11] V. V. Kozlov, “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809 | DOI | MR | Zbl
[12] Kozlov V.V., “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR | Zbl
[13] V. V. Kozlov, “The stability of circulatory systems”, Dokl. Phys., 65:9 (2020), 323–325 | DOI | DOI
[14] V. V. Kozlov and A. A. Karapetyan, “On the stability degree”, Diff. Eqns., 41:2 (2005), 195–201 | MR | Zbl
[15] Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Transl. Math. Monogr., 33, Am. Math. Soc., Providence, RI, 1972 | MR | Zbl
[16] Williamson J., “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR | Zbl
[17] Wintner A., “On the linear conservative dynamical systems”, Ann. Mat. Pura Appl. Ser. IV, 13 (1934), 105–112 | DOI | MR | Zbl
[18] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, v. 1, 2, J. Wiley Sons, New York, 1975 | MR | MR | Zbl