Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a6, author = {A. V. Greshnov}, title = {The {Agrachev--Barilari--Boscain} {Method} and {Estimates} for the {Number} of {Segments} of {Horizontal} {Broken} {Lines} {Joining} {Points} in the {Canonical} {Carnot} {Group} $G_{3,3}$}, journal = {Informatics and Automation}, pages = {108--117}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/} }
TY - JOUR AU - A. V. Greshnov TI - The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$ JO - Informatics and Automation PY - 2023 SP - 108 EP - 117 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/ LA - ru ID - TRSPY_2023_321_a6 ER -
%0 Journal Article %A A. V. Greshnov %T The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$ %J Informatics and Automation %D 2023 %P 108-117 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/ %G ru %F TRSPY_2023_321_a6
A. V. Greshnov. The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/
[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl
[2] Ardentov A.A., Sachkov Yu.L., “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl
[3] Basalaev S.G., Vodopyanov S.K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl
[4] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl
[5] Greshnov A., “Optimal horizontal joinability on the Engel group”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. Ser. IX. Rend. Lincei. Mat. Appl., 32:3 (2021), 535–547 | DOI | MR | Zbl
[6] A. V. Greshnov, “Uniform domains and $NTA$-domains in Carnot groups”, Sib. Math. J., 42:5 (2001), 851–864 | DOI | MR | Zbl
[7] A. V. Greshnov and M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:3–4 (2015), 694–698 | DOI | DOI | MR | Zbl
[8] A. V. Greshnov and R. I. Zhukov, “Horizontal joinability in canonical 3-step Carnot groups with corank 2 horizontal distributions”, Sib. Math. J., 62:4 (2021), 598–606 | DOI | MR | Zbl
[9] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Prog. Math., 144, Birkhäuuser, Basel, 1996, 79–323 | MR | Zbl
[10] Hörmander L., “Hypoelliptic second order differential equations”, Acta math., 119 (1967), 147–171 | DOI | MR | Zbl
[11] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR | Zbl
[12] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. Ser. 2, 129:1 (1989), 1–60 | DOI | MR | Zbl
[13] M. M. Postnikov, Lie Groups and Lie Algebras, Lectures in Geometry, Semester V, Mir, Moscow, 1986 | MR | MR
[14] Rothschild L.P., Stein E.S., “Hypoelliptic differential operators and nilpotent groups”, Acta math., 137 (1976), 247–320 | DOI | MR