Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a6, author = {A. V. Greshnov}, title = {The {Agrachev--Barilari--Boscain} {Method} and {Estimates} for the {Number} of {Segments} of {Horizontal} {Broken} {Lines} {Joining} {Points} in the {Canonical} {Carnot} {Group} $G_{3,3}$}, journal = {Informatics and Automation}, pages = {108--117}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/} }
TY - JOUR AU - A. V. Greshnov TI - The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$ JO - Informatics and Automation PY - 2023 SP - 108 EP - 117 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/ LA - ru ID - TRSPY_2023_321_a6 ER -
%0 Journal Article %A A. V. Greshnov %T The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$ %J Informatics and Automation %D 2023 %P 108-117 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/ %G ru %F TRSPY_2023_321_a6
A. V. Greshnov. The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/