The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a generalization of the Agrachev–Barilari–Boscain method for proving the Rashevskii–Chow theorem, we estimate the minimum number $\mathcal {N}_{G_{3,3}}$ of segments of horizontal broken lines joining two arbitrary points on the six-dimensional two-step canonical Carnot group $G_{3,3}$ with corank $3$ horizontal distribution. We prove that $\mathcal {N}_{G_{3,3}}=3$.
Keywords: canonical Carnot group, Rashevskii–Chow theorem, horizontal broken line.
@article{TRSPY_2023_321_a6,
     author = {A. V. Greshnov},
     title = {The {Agrachev--Barilari--Boscain} {Method} and {Estimates} for the {Number} of {Segments} of {Horizontal} {Broken} {Lines} {Joining} {Points} in the {Canonical} {Carnot} {Group} $G_{3,3}$},
     journal = {Informatics and Automation},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
JO  - Informatics and Automation
PY  - 2023
SP  - 108
EP  - 117
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/
LA  - ru
ID  - TRSPY_2023_321_a6
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
%J Informatics and Automation
%D 2023
%P 108-117
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/
%G ru
%F TRSPY_2023_321_a6
A. V. Greshnov. The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/

[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl

[2] Ardentov A.A., Sachkov Yu.L., “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936 | DOI | MR | Zbl

[3] Basalaev S.G., Vodopyanov S.K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[4] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl

[5] Greshnov A., “Optimal horizontal joinability on the Engel group”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. Ser. IX. Rend. Lincei. Mat. Appl., 32:3 (2021), 535–547 | DOI | MR | Zbl

[6] A. V. Greshnov, “Uniform domains and $NTA$-domains in Carnot groups”, Sib. Math. J., 42:5 (2001), 851–864 | DOI | MR | Zbl

[7] A. V. Greshnov and M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:3–4 (2015), 694–698 | DOI | DOI | MR | Zbl

[8] A. V. Greshnov and R. I. Zhukov, “Horizontal joinability in canonical 3-step Carnot groups with corank 2 horizontal distributions”, Sib. Math. J., 62:4 (2021), 598–606 | DOI | MR | Zbl

[9] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Prog. Math., 144, Birkhäuuser, Basel, 1996, 79–323 | MR | Zbl

[10] Hörmander L., “Hypoelliptic second order differential equations”, Acta math., 119 (1967), 147–171 | DOI | MR | Zbl

[11] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR | Zbl

[12] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. Ser. 2, 129:1 (1989), 1–60 | DOI | MR | Zbl

[13] M. M. Postnikov, Lie Groups and Lie Algebras, Lectures in Geometry, Semester V, Mir, Moscow, 1986 | MR | MR

[14] Rothschild L.P., Stein E.S., “Hypoelliptic differential operators and nilpotent groups”, Acta math., 137 (1976), 247–320 | DOI | MR