The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a generalization of the Agrachev–Barilari–Boscain method for proving the Rashevskii–Chow theorem, we estimate the minimum number $\mathcal {N}_{G_{3,3}}$ of segments of horizontal broken lines joining two arbitrary points on the six-dimensional two-step canonical Carnot group $G_{3,3}$ with corank $3$ horizontal distribution. We prove that $\mathcal {N}_{G_{3,3}}=3$.
Keywords: canonical Carnot group, Rashevskii–Chow theorem, horizontal broken line.
@article{TRSPY_2023_321_a6,
     author = {A. V. Greshnov},
     title = {The {Agrachev--Barilari--Boscain} {Method} and {Estimates} for the {Number} of {Segments} of {Horizontal} {Broken} {Lines} {Joining} {Points} in the {Canonical} {Carnot} {Group} $G_{3,3}$},
     journal = {Informatics and Automation},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
JO  - Informatics and Automation
PY  - 2023
SP  - 108
EP  - 117
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/
LA  - ru
ID  - TRSPY_2023_321_a6
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
%J Informatics and Automation
%D 2023
%P 108-117
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/
%G ru
%F TRSPY_2023_321_a6
A. V. Greshnov. The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 108-117. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a6/