Output Feedback Stabilization of Non-uniformly Observable Systems
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 77-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stabilizing the state of a system relying only on the knowledge of a measured output is a classical control theory problem. Designing a stable closed loop based on an observer design requires that some necessary information on the state can be accessed through the output trajectory. For non-linear systems, this may not be true for all controls. The existence of singular controls (from the point of view of observability) is even generic in many cases. Then, the design of asymptotically stable closed loops becomes a challenge that remains to be fully answered. Using various examples, we propose to review some strategies that showed to be efficient in tackling the difficulties posed by non-uniform observability (i.e., existence of singular controls) in the context of dynamic output feedback stabilization.
@article{TRSPY_2023_321_a4,
     author = {Lucas Brivadis and Jean-Paul Gauthier and Ludovic Sacchelli},
     title = {Output {Feedback} {Stabilization} of {Non-uniformly} {Observable} {Systems}},
     journal = {Informatics and Automation},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a4/}
}
TY  - JOUR
AU  - Lucas Brivadis
AU  - Jean-Paul Gauthier
AU  - Ludovic Sacchelli
TI  - Output Feedback Stabilization of Non-uniformly Observable Systems
JO  - Informatics and Automation
PY  - 2023
SP  - 77
EP  - 93
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a4/
LA  - ru
ID  - TRSPY_2023_321_a4
ER  - 
%0 Journal Article
%A Lucas Brivadis
%A Jean-Paul Gauthier
%A Ludovic Sacchelli
%T Output Feedback Stabilization of Non-uniformly Observable Systems
%J Informatics and Automation
%D 2023
%P 77-93
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a4/
%G ru
%F TRSPY_2023_321_a4
Lucas Brivadis; Jean-Paul Gauthier; Ludovic Sacchelli. Output Feedback Stabilization of Non-uniformly Observable Systems. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 77-93. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a4/

[1] Ajami A., Brouche M., Gauthier J.-P., Sacchelli L., “Output stabilization of military UAV in the unobservable case”, 2020 IEEE Aerospace Conf., IEEE, 2020, 1–6

[2] Ajami A., Gauthier J.-P., Sacchelli L., “Dynamic output stabilization of control systems: An unobservable kinematic drone model”, Automatica, 125 (2021), 109383 | DOI | MR | Zbl

[3] Andrieu V., Praly L., “A unifying point of view on output feedback designs for global asymptotic stabilization”, Automatica, 45:8 (2009), 1789–1798 | DOI | MR | Zbl

[4] Bacciotti A., “Constant feedback stabilizability of bilinear systems”, Realization and modelling in system theory, Math. Theory Networks Syst., MTNS-89, Proc. Int. Symp. (Amsterdam, 1989), v. 1, Prog. Syst. Control Theory, 3, Birkhäuser, Boston, 1990, 357–367 | MR

[5] Barut A.O., Raczka R., Theory of group representations and applications, 2nd ed., World Scientific, Singapore, 1986 | MR | Zbl

[6] Brivadis L., Andrieu V., Serres U., Gauthier J.-P., “Luenberger observers for infinite-dimensional systems, back and forth nudging, and application to a crystallization process”, SIAM J. Control Optim., 59:2 (2021), 857–886 | DOI | MR | Zbl

[7] Brivadis L., Gauthier J.-P., Sacchelli L., Serres U., “Avoiding observability singularities in output feedback bilinear systems”, SIAM J. Control Optim., 59:3 (2021), 1759–1780 | DOI | MR | Zbl

[8] Brivadis L., Gauthier J.-P., Sacchelli L., Serres U., “New perspectives on output feedback stabilization at an unobservable target”, ESAIM. Control Optim. Calc. Var., 27 (2021), 102 | DOI | MR | Zbl

[9] Brivadis L., Sacchelli L., “A switching technique for output feedback stabilization at an unobservable target”, 2021 60th IEEE Conf. on Decision and Control (CDC) (Austin, 2021), IEEE, 2021, 3942–3947 | DOI

[10] Celle F., Gauthier J.-P., Kazakos D., Sallet G., “Synthesis of nonlinear observers: A harmonic-analysis approach”, Math. Syst. Theory, 22:4 (1989), 291–322 | DOI | MR | Zbl

[11] Combes P., Jebai A.K., Malrait F., Martin P., Rouchon P., “Adding virtual measurements by signal injection”, 2016 Amer. Control Conf. (ACC) (Boston, 2016), IEEE, 2016, 999–1005 | DOI

[12] Coron J.-M., “On the stabilization of controllable and observable systems by an output feedback law”, Math. Control Signals Syst., 7:3 (1994), 187–216 | DOI | MR | Zbl

[13] Flayac E., Coupled methods of nonlinear estimation and control applicable to terrain-aided navigation, Thèse Doct., Univ. Paris-Saclay (ComUE), Paris, 2019

[14] Fliess M., Kupka I., “A finiteness criterion for nonlinear input–output differential systems”, SIAM J. Control Optim., 21:5 (1983), 721–728 | DOI | MR | Zbl

[15] Gauthier J.-P., Kupka I., “A separation principle for bilinear systems with dissipative drift”, IEEE Trans. Autom. Control, 37:12 (1992), 1970–1974 | DOI | MR | Zbl

[16] Gauthier J.-P., Kupka I., Deterministic observation theory and applications, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[17] Goresky M., MacPherson R., Stratified Morse theory, Ergeb. Math. Grenzgeb. 3. Flg., 14, Springer, Berlin, 1988 | MR | Zbl

[18] Hoang T.-B., Pasillas-Lépine W., Respondek W., “A switching observer for systems with linearizable error dynamics via singular time-scaling”, Proc. 21st Int. Symp. on Mathematical Theory of Networks and Systems, MTNS 2014 (Groningen), Univ. Groningen, Groningen, 2014, 1101–1108

[19] Jouan P., Gauthier J.-P., “Finite singularities of nonlinear systems. Output stabilization, observability and observers”, Proc. 1995 34th IEEE Conf. on Decision and Control (New Orleans, LA, 1995), v. 4, IEEE, 1995, 3295–3299 | DOI | MR

[20] Jouan P., Gauthier J.-P., “Finite singularities of nonlinear systems. Output stabilization, observability, and observers”, J. Dyn. Control Syst., 2:2 (1996), 255–288 | DOI | MR | Zbl

[21] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[22] J. Kurzweil, “On the inversion of Ljapunov's second theorem on stability of motion”, Am. Math. Soc. Transl., Ser. 2, 24 (1963), 19–77 | Zbl

[23] Lagache M.-A., Serres U., Gauthier J.-P., “Exact output stabilization at unobservable points: Analysis via an example”, Proc. 2017 IEEE 56th Annu. Conf. on Decision and Control (CDC), IEEE, 2017, 6744–6749 | DOI

[24] Massera J.L., “Contributions to stability theory”, Ann. Math. Ser. 2, 64:1 (1956), 182–206 | DOI | MR | Zbl

[25] Mohler R.R., Kolodziej W.J., “An overview of bilinear system theory and applications”, IEEE Trans. Syst. Man Cybern., 10:10 (1980), 683–688 | DOI | MR | Zbl

[26] Nešić D., Sontag E.D., “Input-to-state stabilization of linear systems with positive outputs”, Syst. Control Lett., 35:4 (1998), 245–255 | DOI | MR

[27] Rapaport A., Dochain D., “A robust asymptotic observer for systems that converge to unobservable states—a batch reactor case study”, IEEE Trans. Autom. Control, 65:6 (2020), 2693–2699 | DOI | MR

[28] Sacchelli L., Brivadis L., Andrieu V., Serres U., Gauthier J.-P., “Dynamic output feedback stabilization of non-uniformly observable dissipative systems”, IFAC-PapersOnLine, 53:2 (2020), 4923–4928 | DOI

[29] Shim H., Teel A.R., “Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback”, Automatica, 39:3 (2003), 441–454 | DOI | MR | Zbl

[30] Sontag E.D., “Conditions for abstract nonlinear regulation”, Inf. Control, 51:2 (1981), 105–127 | DOI | MR | Zbl

[31] Surroop D., Combes P., Martin P., Rouchon P., “Third-order virtual measurements with signal injection”, Proc. 2019 IEEE 58th Conf. on Decision and Control (CDC), IEEE, 2019, 642–647 | DOI

[32] Surroop D., Combes P., Martin P., Rouchon P., “Adding virtual measurements by pwm-induced signal injection”, Proc. 2020 Amer. Control Conf. (ACC), IEEE, 2020, 2692–2698 | DOI

[33] Teel A., Praly L., “Global stabilizability and observability imply semi-global stabilizability by output feedback”, Syst. Control Lett., 22:5 (1994), 313–325 | DOI | MR | Zbl

[34] Teel A., Praly L., “Tools for semiglobal stabilization by partial state and output feedback”, SIAM J. Control Optim., 33:5 (1995), 1443–1488 | DOI | MR | Zbl

[35] Teel A.R., Praly L., “A smooth Lyapunov function from a class-$\mathcal K\mathcal L$ estimate involving two positive semidefinite functions”, ESAIM. Control Optim. Calc. Var., 5 (2000), 313–367 | DOI | MR | Zbl

[36] N. J. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr., 22, Am. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl