Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 237-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze the controllability of three quantum systems that belong to a specific class of four-level quantum systems with twice degenerate highest excited energy level and with forbidden transition between the two remaining non-degenerate levels. For this purpose we perform numerical computation, construct the dynamical Lie algebras generated by all commutators of the free and interaction Hamiltonians, and show that two quantum systems are irreducible and controllable while the third system is reducible and hence uncontrollable. The reducibility and uncontrollability are proved by constructing a conserved Hermitian operator (physical quantity). The controllability is proved by constructing the dynamical Lie algebra and showing that it has maximal rank. These findings indicate that depending on the values of certain particular matrix entries of the interaction Hamiltonian, quantum systems in the class under consideration can be either uncontrollable or controllable.
@article{TRSPY_2023_321_a15,
     author = {Anastasia A. Myachkova and Alexander N. Pechen},
     title = {Some {Controllable} and {Uncontrollable} {Degenerate} {Four-Level} {Quantum} {Systems}},
     journal = {Informatics and Automation},
     pages = {237--251},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/}
}
TY  - JOUR
AU  - Anastasia A. Myachkova
AU  - Alexander N. Pechen
TI  - Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems
JO  - Informatics and Automation
PY  - 2023
SP  - 237
EP  - 251
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/
LA  - ru
ID  - TRSPY_2023_321_a15
ER  - 
%0 Journal Article
%A Anastasia A. Myachkova
%A Alexander N. Pechen
%T Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems
%J Informatics and Automation
%D 2023
%P 237-251
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/
%G ru
%F TRSPY_2023_321_a15
Anastasia A. Myachkova; Alexander N. Pechen. Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 237-251. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/

[1] Albertini F., D'Alessandro D., “Notions of controllability for quantum mechanical systems”, Proc. 40th IEEE Conf. on Decision and Control (Orlando, 2001), v. 2, IEEE, 2001, 1589–1594 | DOI | MR

[2] Altafini C., “Controllability of quantum mechanical systems by root space decomposition of $\mathfrak {su}(N)$”, J. Math. Phys., 43:5 (2002), 2051–2062 | DOI | MR | Zbl

[3] Altafini C., “Controllability properties for finite dimensional quantum Markovian master equations”, J. Math. Phys., 44:6 (2003), 2357–2372 | DOI | MR | Zbl

[4] Bloch A.M., Brockett R.W., Rangan C., “Finite controllability of infinite-dimensional quantum systems”, IEEE Trans. Autom. Control, 55:8 (2010), 1797–1805 | DOI | MR | Zbl

[5] Boscain U., Gauthier J.-P., Rossi F., Sigalotti M., “Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems”, Commun. Math. Phys., 333:3 (2015), 1225–1239 | DOI | MR | Zbl

[6] Ciaramella G., Borz\`{ı} A., “Quantum optimal control problems with a sparsity cost functional”, Numer. Funct. Anal. Optim., 37:8 (2016), 938–965 | DOI | MR | Zbl

[7] D'Alessandro D., “Topological properties of reachable sets and the control of quantum bits”, Syst. Control Lett., 41:3 (2000), 213–221 | DOI | MR | Zbl

[8] De Fouquieres P., Schirmer S.G., “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl

[9] Fu H., Schirmer S.G., Solomon A.I., “Complete controllability of finite-level quantum systems”, J. Phys. A: Math. Gen., 34:8 (2001), 1679–1690 | DOI | MR | Zbl

[10] Huang G.M., Tarn T.J., Clark J.W., “On the controllability of quantum-mechanical systems”, J. Math. Phys., 24 (1983), 2608–2618 | DOI | MR | Zbl

[11] Jurdjevic V., Sussmann H.J., “Control systems on Lie groups”, J. Diff. Eqns., 12:2 (1972), 313–329 | DOI | MR | Zbl

[12] Koch C.P., et al., “Quantum optimal control in quantum technologies: Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9:19 (2022) | DOI

[13] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publ., Mineola, NY, 1999 | MR | MR

[14] Lan C.H., Tarn T.J., Chi Q.-S., Clark J.W., “Analytic controllability of time-dependent quantum control systems”, J. Math. Phys., 46:5 (2005), 052102 | DOI | MR | Zbl

[15] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR

[16] Lyakhov K., Lee H.-J., Pechen A., “Some features of boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator”, IEEE J. Quantum Electron., 52:12 (2016), 1400208 | DOI

[17] Lyakhov K.A., Lee H.J., Pechen A.N., “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method”, Separ. Purif. Technol., 176:4 (2017), 402–411 | DOI

[18] Lyakhov K.A., Pechen A.N., “Enrichment factor for molybdenum isotopes separation by the method of laser-assisted retardation of condensation”, Lobachevskii J. Math., 42:10 (2021), 2392–2400 | DOI | Zbl

[19] Minh Q.P., Rabitz H., “Learning control of quantum-mechanical systems by laboratory identification of effective input–output maps”, Chem. Phys., 217:2–3 (1997), 389–400

[20] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V., Rabitz H., “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI

[21] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V.J., Rabitz H., “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI

[22] Morzhin O.V., Pechen A.N., “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system”, Lobachevskii J. Math., 41:12 (2020), 2353–2368 | DOI | MR | Zbl

[23] Morzhin O.V., Pechen A.N., “Generation of density matrices for two qubits using coherent and incoherent controls”, Lobachevskii J. Math., 42:10 (2021), 2401–2412 | DOI | MR

[24] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc., 2362 (2021), 060003 | DOI | MR

[25] Oza A., Pechen A., Dominy J., Beltrani V., Moore K., Rabitz H., “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A: Math. Theor., 42:20 (2009), 205305 | DOI | MR | Zbl

[26] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI

[27] Pechen A., Prokhorenko D., Wu R., Rabitz H., “Control landscapes for two-level open quantum systems”, J. Phys. A: Math. Theor., 41:4 (2008), 045205 | DOI | MR | Zbl

[28] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[29] Pechen A.N., Tannor D.J., “Reply”, Phys. Rev. Lett., 108:19 (2012), 198902 | DOI | MR

[30] Pechen A.N., Tannor D.J., “Quantum control landscape for a $\Lambda $-atom in the vicinity of second-order traps”, Isr. J. Chem., 52:5 (2012), 467–472 | DOI

[31] Pfeifer W., The Lie algebras $su(N)$: An introduction, Birkhäuser, Basel, 2003 | MR

[32] Polack T., Suchowski H., Tannor D.J., “Uncontrollable quantum systems: A classification scheme based on Lie subalgebras”, Phys. Rev. A, 79:5 (2009), 053403 | DOI

[33] Ramakrishna V., Salapaka M.V., Dahleh M., Rabitz H., Peirce A., “Controllability of molecular systems”, Phys. Rev. A, 51:2 (1995), 960–966 | DOI

[34] Rice S.A., Zhao M., Optical control of molecular dynamics, J. Wiley Sons, New York, 2000

[35] Sachkov Yu.L., “Controllability of invariant systems on Lie groups and homogeneous spaces”, J. Math. Sci., 100:4 (2000), 2355–2427 | DOI | MR | Zbl

[36] Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups: Classification and problems integrable by elementary functions”, Russ. Math. Surv., 77:1 (2022), 99–163 | DOI | DOI | MR | Zbl

[37] Schirmer S.G., Fu H., Solomon A.I., “Complete controllability of quantum systems”, Phys. Rev. A, 63:6 (2001), 063410 | DOI | MR

[38] Schirmer S.G., Solomon A.I., Leahy J.V., “Criteria for reachability of quantum states”, J. Phys. A: Math. Gen., 35:40 (2002), 8551–8562 | DOI | MR | Zbl

[39] Schirmer S.G., Solomon A.I., Leahy J.V., “Degrees of controllability for quantum systems and application to atomic systems”, J. Phys. A: Math. Gen., 35:18 (2002), 4125–4141 | DOI | MR | Zbl

[40] Shapiro M., Brumer P., Quantum control of molecular processes, 2nd ed., Wiley-VCH, Weinheim, 2012 | Zbl

[41] Tarn T.J., Clark J.W., Huang G.M., “Analytic controllability of quantum-mechanical systems”, Mathematical theory of networks and systems, Proc. Int. Symp. (Beer Sheva, 1983), Lect. Notes Control Inf. Sci., 58, Springer, Berlin, 1984, 840–855 | MR

[42] Turinici G., Rabitz H., “Quantum wavefunction controllability”, Chem. Phys., 267:1–3 (2001), 1–9 | DOI

[43] Volkov B.O., Morzhin O.V., Pechen A.N., “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A: Math. Theor., 54:21 (2021), 215303 | DOI | MR

[44] Volkov B.O., Pechen A.N., “Higher order traps in quantum control landscapes”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 2002), Arkaim, Vladimir, 2022, 74–75

[45] Wu J., Wu R., Zhang J., Li C., “Controllability of quantum systems with $SU(1,1)$ dynamical symmetry”, J. Syst. Sci. Complex., 34:3 (2021), 827–842 | DOI | MR | Zbl

[46] Wu R., Pechen A., Rabitz H., Hsieh M., Tsou B., “Control landscapes for observable preparation with open quantum systems”, J. Math. Phys., 49:2 (2008), 022108 | DOI | MR | Zbl

[47] Zeier R., Schulte-Herbrüggen T., “Symmetry principles in quantum systems theory”, J. Math. Phys., 52:11 (2011), 113510 | DOI | MR | Zbl