Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a15, author = {Anastasia A. Myachkova and Alexander N. Pechen}, title = {Some {Controllable} and {Uncontrollable} {Degenerate} {Four-Level} {Quantum} {Systems}}, journal = {Informatics and Automation}, pages = {237--251}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/} }
TY - JOUR AU - Anastasia A. Myachkova AU - Alexander N. Pechen TI - Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems JO - Informatics and Automation PY - 2023 SP - 237 EP - 251 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/ LA - ru ID - TRSPY_2023_321_a15 ER -
Anastasia A. Myachkova; Alexander N. Pechen. Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 237-251. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a15/
[1] Albertini F., D'Alessandro D., “Notions of controllability for quantum mechanical systems”, Proc. 40th IEEE Conf. on Decision and Control (Orlando, 2001), v. 2, IEEE, 2001, 1589–1594 | DOI | MR
[2] Altafini C., “Controllability of quantum mechanical systems by root space decomposition of $\mathfrak {su}(N)$”, J. Math. Phys., 43:5 (2002), 2051–2062 | DOI | MR | Zbl
[3] Altafini C., “Controllability properties for finite dimensional quantum Markovian master equations”, J. Math. Phys., 44:6 (2003), 2357–2372 | DOI | MR | Zbl
[4] Bloch A.M., Brockett R.W., Rangan C., “Finite controllability of infinite-dimensional quantum systems”, IEEE Trans. Autom. Control, 55:8 (2010), 1797–1805 | DOI | MR | Zbl
[5] Boscain U., Gauthier J.-P., Rossi F., Sigalotti M., “Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems”, Commun. Math. Phys., 333:3 (2015), 1225–1239 | DOI | MR | Zbl
[6] Ciaramella G., Borz\`{ı} A., “Quantum optimal control problems with a sparsity cost functional”, Numer. Funct. Anal. Optim., 37:8 (2016), 938–965 | DOI | MR | Zbl
[7] D'Alessandro D., “Topological properties of reachable sets and the control of quantum bits”, Syst. Control Lett., 41:3 (2000), 213–221 | DOI | MR | Zbl
[8] De Fouquieres P., Schirmer S.G., “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl
[9] Fu H., Schirmer S.G., Solomon A.I., “Complete controllability of finite-level quantum systems”, J. Phys. A: Math. Gen., 34:8 (2001), 1679–1690 | DOI | MR | Zbl
[10] Huang G.M., Tarn T.J., Clark J.W., “On the controllability of quantum-mechanical systems”, J. Math. Phys., 24 (1983), 2608–2618 | DOI | MR | Zbl
[11] Jurdjevic V., Sussmann H.J., “Control systems on Lie groups”, J. Diff. Eqns., 12:2 (1972), 313–329 | DOI | MR | Zbl
[12] Koch C.P., et al., “Quantum optimal control in quantum technologies: Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9:19 (2022) | DOI
[13] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publ., Mineola, NY, 1999 | MR | MR
[14] Lan C.H., Tarn T.J., Chi Q.-S., Clark J.W., “Analytic controllability of time-dependent quantum control systems”, J. Math. Phys., 46:5 (2005), 052102 | DOI | MR | Zbl
[15] Lokutsievskiy L., Pechen A., “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54:39 (2021), 395304 | DOI | MR
[16] Lyakhov K., Lee H.-J., Pechen A., “Some features of boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator”, IEEE J. Quantum Electron., 52:12 (2016), 1400208 | DOI
[17] Lyakhov K.A., Lee H.J., Pechen A.N., “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method”, Separ. Purif. Technol., 176:4 (2017), 402–411 | DOI
[18] Lyakhov K.A., Pechen A.N., “Enrichment factor for molybdenum isotopes separation by the method of laser-assisted retardation of condensation”, Lobachevskii J. Math., 42:10 (2021), 2392–2400 | DOI | Zbl
[19] Minh Q.P., Rabitz H., “Learning control of quantum-mechanical systems by laboratory identification of effective input–output maps”, Chem. Phys., 217:2–3 (1997), 389–400
[20] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V., Rabitz H., “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI
[21] Moore K.W., Pechen A., Feng X.-J., Dominy J., Beltrani V.J., Rabitz H., “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI
[22] Morzhin O.V., Pechen A.N., “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system”, Lobachevskii J. Math., 41:12 (2020), 2353–2368 | DOI | MR | Zbl
[23] Morzhin O.V., Pechen A.N., “Generation of density matrices for two qubits using coherent and incoherent controls”, Lobachevskii J. Math., 42:10 (2021), 2401–2412 | DOI | MR
[24] Morzhin O.V., Pechen A.N., “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc., 2362 (2021), 060003 | DOI | MR
[25] Oza A., Pechen A., Dominy J., Beltrani V., Moore K., Rabitz H., “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A: Math. Theor., 42:20 (2009), 205305 | DOI | MR | Zbl
[26] Pechen A., “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI
[27] Pechen A., Prokhorenko D., Wu R., Rabitz H., “Control landscapes for two-level open quantum systems”, J. Phys. A: Math. Theor., 41:4 (2008), 045205 | DOI | MR | Zbl
[28] Pechen A.N., Tannor D.J., “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI
[29] Pechen A.N., Tannor D.J., “Reply”, Phys. Rev. Lett., 108:19 (2012), 198902 | DOI | MR
[30] Pechen A.N., Tannor D.J., “Quantum control landscape for a $\Lambda $-atom in the vicinity of second-order traps”, Isr. J. Chem., 52:5 (2012), 467–472 | DOI
[31] Pfeifer W., The Lie algebras $su(N)$: An introduction, Birkhäuser, Basel, 2003 | MR
[32] Polack T., Suchowski H., Tannor D.J., “Uncontrollable quantum systems: A classification scheme based on Lie subalgebras”, Phys. Rev. A, 79:5 (2009), 053403 | DOI
[33] Ramakrishna V., Salapaka M.V., Dahleh M., Rabitz H., Peirce A., “Controllability of molecular systems”, Phys. Rev. A, 51:2 (1995), 960–966 | DOI
[34] Rice S.A., Zhao M., Optical control of molecular dynamics, J. Wiley Sons, New York, 2000
[35] Sachkov Yu.L., “Controllability of invariant systems on Lie groups and homogeneous spaces”, J. Math. Sci., 100:4 (2000), 2355–2427 | DOI | MR | Zbl
[36] Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups: Classification and problems integrable by elementary functions”, Russ. Math. Surv., 77:1 (2022), 99–163 | DOI | DOI | MR | Zbl
[37] Schirmer S.G., Fu H., Solomon A.I., “Complete controllability of quantum systems”, Phys. Rev. A, 63:6 (2001), 063410 | DOI | MR
[38] Schirmer S.G., Solomon A.I., Leahy J.V., “Criteria for reachability of quantum states”, J. Phys. A: Math. Gen., 35:40 (2002), 8551–8562 | DOI | MR | Zbl
[39] Schirmer S.G., Solomon A.I., Leahy J.V., “Degrees of controllability for quantum systems and application to atomic systems”, J. Phys. A: Math. Gen., 35:18 (2002), 4125–4141 | DOI | MR | Zbl
[40] Shapiro M., Brumer P., Quantum control of molecular processes, 2nd ed., Wiley-VCH, Weinheim, 2012 | Zbl
[41] Tarn T.J., Clark J.W., Huang G.M., “Analytic controllability of quantum-mechanical systems”, Mathematical theory of networks and systems, Proc. Int. Symp. (Beer Sheva, 1983), Lect. Notes Control Inf. Sci., 58, Springer, Berlin, 1984, 840–855 | MR
[42] Turinici G., Rabitz H., “Quantum wavefunction controllability”, Chem. Phys., 267:1–3 (2001), 1–9 | DOI
[43] Volkov B.O., Morzhin O.V., Pechen A.N., “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A: Math. Theor., 54:21 (2021), 215303 | DOI | MR
[44] Volkov B.O., Pechen A.N., “Higher order traps in quantum control landscapes”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 2002), Arkaim, Vladimir, 2022, 74–75
[45] Wu J., Wu R., Zhang J., Li C., “Controllability of quantum systems with $SU(1,1)$ dynamical symmetry”, J. Syst. Sci. Complex., 34:3 (2021), 827–842 | DOI | MR | Zbl
[46] Wu R., Pechen A., Rabitz H., Hsieh M., Tsou B., “Control landscapes for observable preparation with open quantum systems”, J. Math. Phys., 49:2 (2008), 022108 | DOI | MR | Zbl
[47] Zeier R., Schulte-Herbrüggen T., “Symmetry principles in quantum systems theory”, J. Math. Phys., 52:11 (2011), 113510 | DOI | MR | Zbl