Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a13, author = {Alexey P. Mashtakov and Yuri L. Sachkov}, title = {Extremal {Trajectories} in a {Time-Optimal} {Problem} on the {Group} of {Motions} of a {Plane} with {Admissible} {Control} in a {Circular} {Sector}}, journal = {Informatics and Automation}, pages = {215--222}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a13/} }
TY - JOUR AU - Alexey P. Mashtakov AU - Yuri L. Sachkov TI - Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector JO - Informatics and Automation PY - 2023 SP - 215 EP - 222 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a13/ LA - ru ID - TRSPY_2023_321_a13 ER -
%0 Journal Article %A Alexey P. Mashtakov %A Yuri L. Sachkov %T Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector %J Informatics and Automation %D 2023 %P 215-222 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a13/ %G ru %F TRSPY_2023_321_a13
Alexey P. Mashtakov; Yuri L. Sachkov. Extremal Trajectories in a Time-Optimal Problem on the Group of Motions of a Plane with Admissible Control in a Circular Sector. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 215-222. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a13/
[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl
[2] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[3] V. I. Arnol'd, Ordinary Differential Equations, Springer, Berlin, 1992 | MR | Zbl
[4] Bekkers E.J., Duits R., Mashtakov A., Sanguinetti G.R., “A PDE approach to data-driven sub-Riemannian geodesics in $\mathrm {SE}(2)$”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770 | DOI | MR | Zbl
[5] V. N. Berestovskiĭ, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Sib. Math. J., 35:6 (1994), 1083–1088 | DOI | MR | Zbl
[6] Boscain U., Gauthier J.-P., Prandi D., Remizov A., “Image reconstruction via non-isotropic diffusion in Dubins/Reed–Shepp-like control systems”, 53rd IEEE Conf. on Decision and Control (Los Angeles, 2014), IEEE, 2014, 4278–4283 | DOI | MR
[7] Citti G., Sarti A., “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vis., 24:3 (2006), 307–326 | DOI | MR | Zbl
[8] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[9] Duits R., Boscain U., Rossi F., Sachkov Yu.L., “Association fields via cuspless sub-Riemannian geodesics in $\mathrm {SE}(2)$”, J. Math. Imaging Vis., 49:2 (2014), 384–417 | DOI | MR | Zbl
[10] Duits R., Meesters S.P.L., Mirebeau J.-M., Portegies J.M., “Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis”, J. Math. Imaging Vis., 60:6 (2018), 816–848 | DOI | MR | Zbl
[11] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205 | DOI | DOI | MR | Zbl
[12] Mashtakov A., “Extremal controls for the Duits car”, Geometric science of information: Proc. 5th Int. Conf. GSI 2021 (Paris, 2021), Lect. Notes Computer Sci., 12829, ed. by F. Nielsen and F. Barbaresco, Springer, Cham, 2021, 73–81 | DOI | MR | Zbl
[13] A. P. Mashtakov, “Time minimization problem on the group of motions of a plane with admissible control in a half-disc”, Sb. Math., 213:4 (2022), 534–555 | DOI | DOI | MR | Zbl
[14] Mashtakov A.P., Ardentov A.A., Sachkov Yu.L., “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115 | DOI | MR | Zbl
[15] Petitot J., “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2–3 (2003), 265–309 | DOI
[16] Reeds J.A., Shepp L.A., “Optimal paths for a car that goes both forwards and backwards”, Pac. J. Math., 145:2 (1990), 367–393 | DOI | MR | Zbl
[17] Yu. L. Sachkov, “Control theory on Lie groups”, J. Math. Sci., 156:3 (2009), 381–439 | DOI | MR | Zbl
[18] Sachkov Yu.L., “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM. Control Optim. Calc. Var., 17:2 (2011), 293–321 | DOI | MR | Zbl