Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 243-277

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bott–Thurston cocycle is a $2$-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We introduce and study a formal analog of the Bott–Thurston cocycle. The formal Bott–Thurston cocycle is a $2$-cocycle on the group of continuous $A$-automorphisms of the algebra $A((t))$ of Laurent series over a commutative ring $A$ with values in the group $A^*$ of invertible elements of $A$. We prove that the central extension given by the formal Bott–Thurston cocycle is equivalent to the 12-fold Baer sum of the determinantal central extension when $A$ is a $\mathbb Q$-algebra. As a consequence of this result we prove a part of a new formal Riemann–Roch theorem. This Riemann–Roch theorem is applied to a ringed space on a separated scheme $S$ over $\mathbb Q$, where the structure sheaf of the ringed space is locally on $S$ isomorphic to the sheaf $\mathcal O_S((t))$ and the transition automorphisms are continuous. Locally on $S$ this ringed space corresponds to the punctured formal neighborhood of a section of a smooth morphism to $U$ of relative dimension $1$, where $U \subset S$ is an open subset.
@article{TRSPY_2023_320_a9,
     author = {D. V. Osipov},
     title = {Formal {Bott--Thurston} {Cocycle} and {Part} of a {Formal} {Riemann--Roch} {Theorem}},
     journal = {Informatics and Automation},
     pages = {243--277},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
JO  - Informatics and Automation
PY  - 2023
SP  - 243
EP  - 277
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/
LA  - ru
ID  - TRSPY_2023_320_a9
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
%J Informatics and Automation
%D 2023
%P 243-277
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/
%G ru
%F TRSPY_2023_320_a9
D. V. Osipov. Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 243-277. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/