Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 243-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bott–Thurston cocycle is a $2$-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We introduce and study a formal analog of the Bott–Thurston cocycle. The formal Bott–Thurston cocycle is a $2$-cocycle on the group of continuous $A$-automorphisms of the algebra $A((t))$ of Laurent series over a commutative ring $A$ with values in the group $A^*$ of invertible elements of $A$. We prove that the central extension given by the formal Bott–Thurston cocycle is equivalent to the 12-fold Baer sum of the determinantal central extension when $A$ is a $\mathbb Q$-algebra. As a consequence of this result we prove a part of a new formal Riemann–Roch theorem. This Riemann–Roch theorem is applied to a ringed space on a separated scheme $S$ over $\mathbb Q$, where the structure sheaf of the ringed space is locally on $S$ isomorphic to the sheaf $\mathcal O_S((t))$ and the transition automorphisms are continuous. Locally on $S$ this ringed space corresponds to the punctured formal neighborhood of a section of a smooth morphism to $U$ of relative dimension $1$, where $U \subset S$ is an open subset.
@article{TRSPY_2023_320_a9,
     author = {D. V. Osipov},
     title = {Formal {Bott--Thurston} {Cocycle} and {Part} of a {Formal} {Riemann--Roch} {Theorem}},
     journal = {Informatics and Automation},
     pages = {243--277},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
JO  - Informatics and Automation
PY  - 2023
SP  - 243
EP  - 277
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/
LA  - ru
ID  - TRSPY_2023_320_a9
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem
%J Informatics and Automation
%D 2023
%P 243-277
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/
%G ru
%F TRSPY_2023_320_a9
D. V. Osipov. Formal Bott--Thurston Cocycle and Part of a Formal Riemann--Roch Theorem. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 243-277. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a9/

[1] Beilinson A., Bloch S., Esnault H., “$\varepsilon $-Factors for Gauss–Manin determinants”, Moscow Math. J., 2:3 (2002), 477–532 | DOI | MR | Zbl

[2] Bloch S., “$K_2$ and algebraic cycles”, Ann. Math. Ser. 2, 99 (1974), 349–379 | DOI | MR | Zbl

[3] Bott R., “On the characteristic classes of groups of diffeomorphisms”, Enseign. math. Sér. 2, 23:3–4 (1977), 209–220 | MR | Zbl

[4] Bott R., “On some formulas for the characteristic classes of group-actions”, Differential topology, foliations and Gelfand–Fuks cohomology, Proc. Symp. (Rio de Janeiro, 1976), Lect. Notes Math., 652, Springer, Berlin, 1978, 25–61 | DOI | MR

[5] Bressler P., Kapranov M., Tsygan B., Vasserot E., “Riemann–Roch for real varieties”, Algebra, arithmetic, and geometry: In honor of Yu. I. Manin on the occasion of his 70th birthday, v. I, Prog. Math., 269, Birkhäuser, Boston, 2009, 125–164 ; Braun K.S., Kogomologii grupp, Nauka, M., 1987 | DOI | MR | Zbl | MR

[6] K. S. Brown, Cohomology of Groups, Grad. Texts Math., 87, Springer, New York, 1982 | DOI | MR | MR | Zbl

[7] Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Prog. Math., 107, Birkhäuser, Boston, 1993 | MR | Zbl

[8] Contou-Carrère C., “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. r. Acad. sci. Paris. Sér. I, 318:8 (1994), 743–746 | MR | Zbl

[9] Contou-Carrère C., “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl

[10] Deligne P., “Le déterminant de la cohomologie”, Current trends in arithmetical algebraic geometry, Proc. Summer Res. Conf. (Arcata, CA, 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 93–177 | DOI | MR

[11] Deligne P., “Le symbole modéré”, Publ. math. Inst. hautes étud. sci., 73 (1991), 147–181 | DOI | MR | Zbl

[12] Demazure M., Grothendieck A., Schémas en groupes. I: Prorpiétés générales des schémas en groupes, Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3). Lect. Notes Math., 151, Springer, Berlin, 1970 | MR

[13] Dieudonné J., Introduction to the theory of formal groups, Pure Appl. Math., 20, M. Dekker, New York, 1973 | MR | Zbl

[14] B. L. Feigin and D. B. Fuchs, “Cohomologies of Lie groups and Lie algebras”, Lie Groups and Lie Algebras II, Encycl. Math. Sci., 21, Springer, Berlin, 2000, 125–215 | MR

[15] Frenkel E., Zhu X., “Gerbal representations of double loop groups”, Int. Math. Res. Not., 2012:17 (2012), 3929–4013 | MR | Zbl

[16] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, 1986 | MR | Zbl

[17] S. O. Gorchinskiy and D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: Local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl

[18] S. O. Gorchinskiy and D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 | DOI | DOI | MR | Zbl

[19] S. O. Gorchinskiy and D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl

[20] S. O. Gorchinskiy and D. V. Osipov, “The higher-dimensional Contou-Carrère symbol and commutative group schemes”, Russ. Math. Surv., 75:3 (2020), 572–574 | DOI | DOI | MR | Zbl

[21] S. O. Gorchinskiy and D. V. Osipov, “Iterated Laurent series over rings and the Contou-Carrère symbol”, Russ. Math. Surv., 75:6 (2020), 995–1066 | DOI | DOI | MR | Zbl

[22] Grothendieck A., Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (quatrième partie), Publ. math. Inst. hautes étud. sci., 32, Inst. hautes étud. sci., Bures-sur-Yvette, 1967 | MR

[23] Guieu L., Roger C., L'algèbre et le groupe de Virasoro: Aspects géométriques et algébriques, généralisations (avec un appendice de Vlad Sergiescu), Les Publ. CRM, Montreal, 2007 | MR

[24] Kac V.G., Peterson D.H., “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Natl. Acad. Sci. USA, 78:6 (1981), 3308–3312 | DOI | MR | Zbl

[25] Kapranov M., Vasserot É., “Formal loops. II: A local Riemann–Roch theorem for determinantal gerbes”, Ann. sci. Éc. norm. supér. Ser. 4, 40:1 (2007), 113–133 | MR | Zbl

[26] Kato K., “Milnor K-theory and the Chow group of zero cycles”, Applications of algebraic K-theory to algebraic geometry and number theory, Proc. AMS–IMS–SIAM Joint Summer Res. Conf., Part I (Boulder, CO, 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 241–253 ; Vendt R., Khesin B.A., Geometriya beskonechnomernykh grupp, MTsNMO, M., 2014 | DOI | MR

[27] B. A. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergeb. Math. Grenzgeb., 3. Folge, 51, Springer, Berlin, 2009 ; Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[28] J. Milnor, Introduction to Algebraic $K$-Theory, Ann. Math. Stud., 72, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[29] Morava J., “An algebraic analog of the Virasoro group”, Czech. J. Phys., 51:12 (2001), 1395–1400 ; Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968 | DOI | MR | Zbl

[30] D. Mumford, Lectures on Curves on an Algebraic Surface, Ann. Math. Stud., 59, Princeton Univ. Press, Princeton, NJ, 1966 | MR | Zbl

[31] D. V. Osipov, “Adele constructions of direct images of differentials and symbols”, Sb. Math., 188:5 (1997), 697–723 | DOI | DOI | MR | Zbl

[32] Osipov D., Zhu X., “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebr. Geom., 25:4 (2016), 703–774 ; Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | DOI | MR | Zbl

[33] A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1988 | MR | Zbl

[34] Segal G., “Unitary representations of some infinite dimensional groups”, Commun. Math. Phys., 80:3 (1981), 301–342 | DOI | MR | Zbl