Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our papers of 2013–2018, we classified degenerations and Picard lattices of Kählerian K3 surfaces with finite symplectic automorphism groups of high order. For the remaining groups of small order—$D_6$, $C_4$, $(C_2)^2$, $C_3$, $C_2$, and $C_1$—the classification was not completed, because each of these cases requires very long and difficult considerations and calculations. The cases of $D_6$ and $C_4$ have been recently completely analyzed. Here we consider an analogous complete classification for the group $(C_2)^2$ of order $4$. We restrict ourselves to degenerations of codimension ${\le }\,5$. This group also has degenerations of codimension $6$ and $7$, which will be classified in a future paper.
@article{TRSPY_2023_320_a8,
     author = {Viacheslav V. Nikulin},
     title = {Classification of {Degenerations} of {Codimension} ${\le }\,5$ and {Their} {Picard} {Lattices} for {K\"ahlerian} {K3} {Surfaces} with the {Symplectic} {Automorphism} {Group} $(C_2)^2$},
     journal = {Informatics and Automation},
     pages = {189--242},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/}
}
TY  - JOUR
AU  - Viacheslav V. Nikulin
TI  - Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
JO  - Informatics and Automation
PY  - 2023
SP  - 189
EP  - 242
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/
LA  - ru
ID  - TRSPY_2023_320_a8
ER  - 
%0 Journal Article
%A Viacheslav V. Nikulin
%T Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
%J Informatics and Automation
%D 2023
%P 189-242
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/
%G ru
%F TRSPY_2023_320_a8
Viacheslav V. Nikulin. Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for K\"ahlerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/

[1] N. Bourbaki, Groupes et algèbres de Lie. Chs. IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des réflexions. Systèmes de racines, Éléments de mathématique, Hermann, Paris, 1968 | MR

[2] Burns D., Jr., Rapoport M., “On the Torelli problem for kählerian K-3 surfaces”, Ann. sci. Éc. norm. supér. Sér. 4, 8:2 (1975), 235–273 ; Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990 | MR | Zbl

[3] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundl. Math. Wiss., 290, Springer, New York, 1988 | MR | Zbl

[4] GAP Group., GAP—groups, algorithms, programming—a system for computational discrete algebra. Vers. 4.6.5, 2013 http://www.gap-system.org

[5] Hashimoto K., “Finite symplectic actions on the $K3$ lattice”, Nagoya Math J., 206 (2012), 99–153 ; arXiv: 1012.2682 | DOI | MR | Zbl

[6] Kondō S., “Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces (with appendix by S. Mukai)”, Duke Math. J., 92:3 (1998), 593–603 | MR | Zbl

[7] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR, Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl | Zbl

[8] Mukai S., “Finite groups of automorphisms of K3 surfaces and the Mathieu group”, Invent. math., 94:1 (1988), 183–221 | DOI | MR | Zbl

[9] V. V. Nikulin, “On Kummer surfaces”, Math. USSR, Izv., 9:2 (1975), 261–275 | DOI | MR | Zbl

[10] Nikulin V.V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, UMN, 31:2 (1976), 223–224 | MR | Zbl

[11] Nikulin V.V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38 (1979), 75–137 | Zbl

[12] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR, Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl | Zbl

[13] V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997 | DOI | DOI | MR | Zbl

[14] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794 | DOI | DOI | MR | Zbl

[15] Nikulin V.V., “Kählerian $K3$ surfaces and Niemeier lattices. II”, Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., 69, Math. Soc. Japan, Tokyo, 2016, 421–471 ; arXiv: 1109.2879 | DOI | MR | Zbl

[16] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402 | DOI | DOI | MR | Zbl

[17] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029 | DOI | DOI | MR | Zbl

[18] V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816 | DOI | DOI | MR | Zbl

[19] V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group $D_6$”, Izv. Math., 83:6 (2019), 1201–1233 | DOI | DOI | MR | Zbl

[20] V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group $C_4$”, Proc. Steklov Inst. Math., 307 (2019), 130–161 | DOI | DOI | MR | Zbl

[21] I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR, Izv., 5:3 (1971), 547–588 | DOI | MR | Zbl

[22] I. R. Šafarevič, B. G. Averbuh, Ju. R. Vainberg, A. B. Žižčenko, Ju. I. Manin, B. G. Moišezon, G. N. Tjurina, and A. N. Tjurin, Algebraic Surfaces, Proc. Steklov Inst. Math., 75, Am. Math. Soc., Providence, RI, 1967 | MR

[23] Siu Y.-T., “A simple proof of the surjectivity of the period map of K3 surfaces”, Manuscr. math., 35:3 (1981), 311–321 | DOI | MR | Zbl

[24] Todorov A.N., “Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of K3 surfaces”, Invent. math., 61:3 (1980), 251–265 | DOI | MR | Zbl

[25] Xiao G., “Galois covers between $K3$ surfaces”, Ann. Inst. Fourier, 46:1 (1996), 73–88 | DOI | MR | Zbl