Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for Kählerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In our papers of 2013–2018, we classified degenerations and Picard lattices of Kählerian K3 surfaces with finite symplectic automorphism groups of high order. For the remaining groups of small order—$D_6$, $C_4$, $(C_2)^2$, $C_3$, $C_2$, and $C_1$—the classification was not completed, because each of these cases requires very long and difficult considerations and calculations. The cases of $D_6$ and $C_4$ have been recently completely analyzed. Here we consider an analogous complete classification for the group $(C_2)^2$ of order $4$. We restrict ourselves to degenerations of codimension ${\le }\,5$. This group also has degenerations of codimension $6$ and $7$, which will be classified in a future paper.
@article{TRSPY_2023_320_a8,
     author = {Viacheslav V. Nikulin},
     title = {Classification of {Degenerations} of {Codimension} ${\le }\,5$ and {Their} {Picard} {Lattices} for {K\"ahlerian} {K3} {Surfaces} with the {Symplectic} {Automorphism} {Group} $(C_2)^2$},
     journal = {Informatics and Automation},
     pages = {189--242},
     year = {2023},
     volume = {320},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/}
}
TY  - JOUR
AU  - Viacheslav V. Nikulin
TI  - Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for Kählerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
JO  - Informatics and Automation
PY  - 2023
SP  - 189
EP  - 242
VL  - 320
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/
LA  - ru
ID  - TRSPY_2023_320_a8
ER  - 
%0 Journal Article
%A Viacheslav V. Nikulin
%T Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for Kählerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$
%J Informatics and Automation
%D 2023
%P 189-242
%V 320
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/
%G ru
%F TRSPY_2023_320_a8
Viacheslav V. Nikulin. Classification of Degenerations of Codimension ${\le }\,5$ and Their Picard Lattices for Kählerian K3 Surfaces with the Symplectic Automorphism Group $(C_2)^2$. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 189-242. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a8/

[1] N. Bourbaki, Groupes et algèbres de Lie. Chs. IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des réflexions. Systèmes de racines, Éléments de mathématique, Hermann, Paris, 1968 | MR

[2] Burns D., Jr., Rapoport M., “On the Torelli problem for kählerian K-3 surfaces”, Ann. sci. Éc. norm. supér. Sér. 4, 8:2 (1975), 235–273 ; Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990 | MR | Zbl

[3] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundl. Math. Wiss., 290, Springer, New York, 1988 | MR | Zbl

[4] GAP Group., GAP—groups, algorithms, programming—a system for computational discrete algebra. Vers. 4.6.5, 2013 http://www.gap-system.org

[5] Hashimoto K., “Finite symplectic actions on the $K3$ lattice”, Nagoya Math J., 206 (2012), 99–153 ; arXiv: 1012.2682 | DOI | MR | Zbl

[6] Kondō S., “Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces (with appendix by S. Mukai)”, Duke Math. J., 92:3 (1998), 593–603 | MR | Zbl

[7] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR, Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl | Zbl

[8] Mukai S., “Finite groups of automorphisms of K3 surfaces and the Mathieu group”, Invent. math., 94:1 (1988), 183–221 | DOI | MR | Zbl

[9] V. V. Nikulin, “On Kummer surfaces”, Math. USSR, Izv., 9:2 (1975), 261–275 | DOI | MR | Zbl

[10] Nikulin V.V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, UMN, 31:2 (1976), 223–224 | MR | Zbl

[11] Nikulin V.V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38 (1979), 75–137 | Zbl

[12] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR, Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl | Zbl

[13] V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997 | DOI | DOI | MR | Zbl

[14] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794 | DOI | DOI | MR | Zbl

[15] Nikulin V.V., “Kählerian $K3$ surfaces and Niemeier lattices. II”, Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., 69, Math. Soc. Japan, Tokyo, 2016, 421–471 ; arXiv: 1109.2879 | DOI | MR | Zbl

[16] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402 | DOI | DOI | MR | Zbl

[17] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029 | DOI | DOI | MR | Zbl

[18] V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816 | DOI | DOI | MR | Zbl

[19] V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group $D_6$”, Izv. Math., 83:6 (2019), 1201–1233 | DOI | DOI | MR | Zbl

[20] V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group $C_4$”, Proc. Steklov Inst. Math., 307 (2019), 130–161 | DOI | DOI | MR | Zbl

[21] I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR, Izv., 5:3 (1971), 547–588 | DOI | MR | Zbl

[22] I. R. Šafarevič, B. G. Averbuh, Ju. R. Vainberg, A. B. Žižčenko, Ju. I. Manin, B. G. Moišezon, G. N. Tjurina, and A. N. Tjurin, Algebraic Surfaces, Proc. Steklov Inst. Math., 75, Am. Math. Soc., Providence, RI, 1967 | MR

[23] Siu Y.-T., “A simple proof of the surjectivity of the period map of K3 surfaces”, Manuscr. math., 35:3 (1981), 311–321 | DOI | MR | Zbl

[24] Todorov A.N., “Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of K3 surfaces”, Invent. math., 61:3 (1980), 251–265 | DOI | MR | Zbl

[25] Xiao G., “Galois covers between $K3$ surfaces”, Ann. Inst. Fourier, 46:1 (1996), 73–88 | DOI | MR | Zbl