Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_320_a6, author = {Alexander B. Zheglov}, title = {The {Schur--Sato} {Theory} for {Quasi-elliptic} {Rings}}, journal = {Informatics and Automation}, pages = {128--176}, publisher = {mathdoc}, volume = {320}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a6/} }
Alexander B. Zheglov. The Schur--Sato Theory for Quasi-elliptic Rings. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 128-176. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a6/
[1] Abhyankar S.S., Lectures in algebraic geometry, notes by C. Christensen, Purdue Univ., West Lafayette, 1974
[2] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969 | MR | Zbl
[3] Bass H., Connell E.H., Wright D., “The Jacobian conjecture: Reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl
[4] Berest Yu., Etingof P., Ginzburg V., “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118:2 (2003), 279–337 | DOI | MR | Zbl
[5] Bourbaki N., Algèbre commutative, Ch. 5: Entiers. Ch. 6: Valuations, Éléments de mathématique. Fasc. 30, Hermann, Paris, 1964 | MR | Zbl
[6] Braverman A., Etingof P., Gaitsgory D., “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2:1 (1997), 31–56 | DOI | MR | Zbl
[7] Bruns W., Herzog J., Cohen–Macaulay rings, Cambridge Stud. Adv. Math., 39, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[8] Burban I., Zheglov A., “Fourier–Mukai transform on Weierstrass cubics and commuting differential operators”, Int. J. Math., 29:10 (2018), 1850064 | DOI | MR | Zbl
[9] Burban I., Zheglov A., “Cohen–Macaulay modules over the algebra of planar quasi-invariants and Calogero–Moser systems”, Proc. London Math. Soc. Ser. 3, 121:4 (2020), 1033–1082 ; arXiv: 1703.01762 | DOI | MR | Zbl
[10] Burchnall J.L., Chaundy T.W., “Commutative ordinary differential operators. II: The identity $P^n=Q^m$”, Proc. R. Soc. London A, 134 (1931), 471–485 | DOI | MR | Zbl
[11] Chalykh O., “Algebro-geometric Schrödinger operators in many dimensions”, Philos. Trans. R. Soc. London A. Math. Phys. Eng. Sci., 366:1867 (2008), 947–971 | MR | Zbl
[12] Chalykh O., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39:2 (1998), 695–703 | DOI | MR | Zbl
[13] Chalykh O.A., Veselov A.P., “Commutative rings of partial differential operators and Lie algebras”, Commun. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl
[14] V. G. Drinfel'd, “Commutative subrings of certain noncommutative rings”, Funct. Anal. Appl., 11:1 (1977), 9–12 | DOI | MR | Zbl | Zbl
[15] Fargues L., Fontaine J.-M., “Vector bundles on curves and $p$-adic Hodge theory”, Automorphic forms and Galois representations, Proc. 94th LMS–EPSRC Durham Symp. (2011), v. 2, LMS Lect. Note Ser., 415, ed. by F. Diamond, P.L. Kassaei, M. Kim, Cambridge Univ. Press, Cambridge, 2014, 17–104 | MR | Zbl
[16] Good I.J., “Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes”, Proc. Cambridge Philos. Soc., 56 (1960), 367–380 | DOI | MR | Zbl
[17] Heckman G.J., “A remark on the Dunkl differential–difference operators”, Harmonic analysis on reductive groups, Proc. Conf. (Brunswick, ME, 1989), Prog. Math., 101, Birkhäuser, Boston, 1991, 181–191 | DOI | MR
[18] Joni S.A., “Lagrange inversion in higher dimensions and umbral operators”, Linear Multilinear Algebra, 6:2 (1978), 111–122 | DOI | MR | Zbl
[19] Kanel-Belov A.Ya., Kontsevich M.L., “The Jacobian conjecture is stably equivalent to the Dixmier conjecture”, Moscow Math. J., 7:2 (2007), 209–218 | DOI | MR | Zbl
[20] Kasman A., Previato E., “Commutative partial differential operators”, Physica D, 152–153 (2001), 66–77 | DOI | MR | Zbl
[21] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russ. Math. Surv., 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl
[22] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl
[23] I. M. Krichever and S. P. Novikov, “Two-dimensional Toda lattice, commuting difference operators, and holomorphic bundles”, Russ. Math. Surv., 58:3 (2003), 473–510 | DOI | DOI | MR | Zbl
[24] Vik. S. Kulikov, “On divisors of small canonical degree on Godeaux surfaces”, Sb. Math., 209:8 (2018), 1155–1163 | DOI | DOI | MR | Zbl
[25] Kurke H., Osipov D., Zheglov A., “Formal punctured ribbons and two-dimensional local fields”, J. reine angew. Math., 629 (2009), 133–170 | MR | Zbl
[26] Kurke H., Osipov D.V., Zheglov A.B., “Formal groups arising from formal punctured ribbons”, Int. J. Math., 21:6 (2010), 755–797 | DOI | MR | Zbl
[27] Kurke H., Osipov D., Zheglov A., “Commuting differential operators and higher-dimensional algebraic varieties”, Sel. math. New Ser., 20:4 (2014), 1159–1195 | DOI | MR | Zbl
[28] Yu. I. Manin, “Algebraic aspects of nonlinear differential equations”, J. Sov. Math., 11 (1979), 1–122 | DOI | MR | Zbl
[29] G. S. Mauleshova and A. E. Mironov, “Difference Krichever–Novikov operators of rank 2”, Proc. Steklov Inst. Math., 305 (2019), 195–208 | DOI | DOI | MR | Zbl
[30] G. S. Mauleshova and A. E. Mironov, “Discretization of commuting ordinary differential operators of rank 2 in the case of elliptic spectral curves”, Proc. Steklov Inst. Math., 310 (2020), 202–213 | DOI | DOI | MR | Zbl
[31] Van Moerbeke P., Mumford D., “The spectrum of difference operators and algebraic curves”, Acta math., 143 (1979), 93–154 | DOI | MR | Zbl
[32] Mulase M., “Solvability of the super KP equation and a generalization of the Birkhoff decomposition”, Invent. math., 92:1 (1988), 1–46 | DOI | MR | Zbl
[33] Mulase M., “Category of vector bundles on algebraic curves and infinite dimensional Grassmannians”, Int. J. Math., 1:3 (1990), 293–342 | DOI | MR | Zbl
[34] Mulase M., “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Proc. conf. Taiwan and Los Angeles(, CA, USA, 1992), Conf. Proc. Lect. Notes Math. Phys., 3, ed. by R. Penner, S.-T. Yau, Int. Press, Boston, 1994, 151–217 | MR | Zbl
[35] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book-Store, Tokyo, 1978, 115–153 | MR
[36] D. V. Osipov, “Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl
[37] A. N. Parshin, “On a ring of formal pseudodifferential operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280 | MR | Zbl
[38] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | DOI | MR | MR | Zbl
[39] Parshin A.N., “Integrable systems and local fields”, Commun. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl
[40] Previato E., “Seventy years of spectral curves: 1923–1993”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 419–481 | DOI | MR | Zbl
[41] Quandt I., “On a relative version of the Krichever correspondence”, Bayreuther Math. Schr., 52 (1997), 1–74 | MR | Zbl
[42] Sato M., “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random systems and dynamical systems, Proc. Symp. (Kyoto, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Res. Inst. Math. Sci., Kyoto, 1981, 30–46 | Zbl
[43] Sato M., Soliton equations and the universal Grassmann manifold, notes by M. Noumi, Sophia Kokyuroku Math., 18, Sophia Univ., Tokyo, 1984 (in Japanese) | Zbl
[44] Schur I., “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berl. Math. Ges., 4 (1905), 2–8
[45] Segal G., Wilson G., “Loop groups and equations of KdV type”, Publ. math. Inst. hautes étud. sci., 61 (1985), 5–65 | DOI | MR | Zbl
[46] Serre J.-P., Lie algebras and Lie groups, W. A. Benjamin, New York, 1965 | MR | Zbl
[47] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, 2001 | MR | Zbl
[48] Tsuchimoto Y., “Preliminaries on Dixmier conjecture”, Mem. Fac. Sci. Kochi Univ. Ser. A, 24 (2003), 43–59 | MR | Zbl
[49] Tsuchimoto Y., “Endomorphisms of Weyl algebra and $p$-curvatures”, Osaka J. Math., 42:2 (2005), 435–452 | MR | Zbl
[50] Verdier J.-L., “Équations différentielles algébriques”, Séminaire Bourbaki 1977/78. Exposes 507–524, Exp. 512, Lect. Notes Math., 71, Springer, Berlin, 1979, 101–122 | DOI | MR
[51] A. P. Veselov, K. L. Styrkas, and O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, Theor. Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl
[52] Wallenberg G., “Über die Vertauschbarkeit homogener linearer Differentialausdrücke”, Arch. Math. Phys. 3. Reihe, 4 (1903), 252–268
[53] Zheglov A.B., Two dimensional KP systems and their solvability, Preprint, Humboldt Univ. Berlin, Berlin, 2005; arXiv: math-ph/0503067v2
[54] A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814 | DOI | MR | Zbl
[55] A. B. Zheglov, “Surprising examples of nonrational smooth spectral surfaces”, Sb. Math., 209:8 (2018), 1131–1154 | DOI | DOI | MR | Zbl
[56] Zheglov A., “Algebraic geometric properties of spectral surfaces of quantum integrable systems and their isospectral deformations”, Geometric methods in physics XXXVIII, Workshop (Białowieża, Poland, 2019), Trends Math., Birkhäuser, Cham, 2020, 313–331 | DOI | MR | Zbl
[57] Zheglov A.B., Algebra, geometry and analysis of commuting ordinary differential operators, Moscow State Univ., Moscow, 2020 https://www.researchgate.net/publication/340952902
[58] A. B. Zheglov and H. Kurke, “Geometric properties of commutative subalgebras of partial differential operators”, Sb. Math., 206:5 (2015), 676–717 | DOI | DOI | MR | Zbl
[59] A. B. Zheglov and D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:3–4 (2007), 467–476 | DOI | DOI | MR | Zbl