A Pro-algebraic Fundamental Group for Topological Spaces
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 71-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a connected topological space $X$ with a point $x$ in $X$ and let $K$ be a field with the discrete topology. We study the Tannakian category of finite-dimensional (flat) vector bundles on $X$ and its Tannakian dual $\pi (X,x)$ with respect to the fiber functor in $x$. The maximal pro-étale quotient of $\pi (X,x)$ is the étale fundamental group of $X$ studied by Kucharczyk and Scholze. For well-behaved topological spaces, $\pi (X,x)$ is the pro-algebraic completion of the ordinary fundamental group. We obtain some structural results on $\pi (X,x)$ for very general topological spaces by studying (pseudo)torsors attached to its quotients. This approach uses ideas of Nori in algebraic geometry and a result of Deligne on Tannakian categories. We also calculate $\pi (X,x)$ for some generalized solenoids.
@article{TRSPY_2023_320_a4,
     author = {Christopher Deninger},
     title = {A {Pro-algebraic} {Fundamental} {Group} for {Topological} {Spaces}},
     journal = {Informatics and Automation},
     pages = {71--102},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/}
}
TY  - JOUR
AU  - Christopher Deninger
TI  - A Pro-algebraic Fundamental Group for Topological Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 71
EP  - 102
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/
LA  - ru
ID  - TRSPY_2023_320_a4
ER  - 
%0 Journal Article
%A Christopher Deninger
%T A Pro-algebraic Fundamental Group for Topological Spaces
%J Informatics and Automation
%D 2023
%P 71-102
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/
%G ru
%F TRSPY_2023_320_a4
Christopher Deninger. A Pro-algebraic Fundamental Group for Topological Spaces. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 71-102. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/