A Pro-algebraic Fundamental Group for Topological Spaces
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 71-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a connected topological space $X$ with a point $x$ in $X$ and let $K$ be a field with the discrete topology. We study the Tannakian category of finite-dimensional (flat) vector bundles on $X$ and its Tannakian dual $\pi (X,x)$ with respect to the fiber functor in $x$. The maximal pro-étale quotient of $\pi (X,x)$ is the étale fundamental group of $X$ studied by Kucharczyk and Scholze. For well-behaved topological spaces, $\pi (X,x)$ is the pro-algebraic completion of the ordinary fundamental group. We obtain some structural results on $\pi (X,x)$ for very general topological spaces by studying (pseudo)torsors attached to its quotients. This approach uses ideas of Nori in algebraic geometry and a result of Deligne on Tannakian categories. We also calculate $\pi (X,x)$ for some generalized solenoids.
@article{TRSPY_2023_320_a4,
     author = {Christopher Deninger},
     title = {A {Pro-algebraic} {Fundamental} {Group} for {Topological} {Spaces}},
     journal = {Informatics and Automation},
     pages = {71--102},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/}
}
TY  - JOUR
AU  - Christopher Deninger
TI  - A Pro-algebraic Fundamental Group for Topological Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 71
EP  - 102
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/
LA  - ru
ID  - TRSPY_2023_320_a4
ER  - 
%0 Journal Article
%A Christopher Deninger
%T A Pro-algebraic Fundamental Group for Topological Spaces
%J Informatics and Automation
%D 2023
%P 71-102
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/
%G ru
%F TRSPY_2023_320_a4
Christopher Deninger. A Pro-algebraic Fundamental Group for Topological Spaces. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 71-102. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a4/

[1] Bass H., Lubotzky A., Magid A.R., Mozes S., “The proalgebraic completion of rigid groups”, Geom. dedicata, 95 (2002), 19–58 | DOI | MR | Zbl

[2] Bredon G.E., Sheaf theory, Grad. Texts Math., 170, 2nd ed., Springer, New York, 1997 | DOI | MR | Zbl

[3] Coulembier K., Tannakian categories in positive characteristic, E-print, 2019, arXiv: 1812.02452v3 | MR

[4] Deligne P., Catégories tannakiennes sur $k$ algébriquement clos: Letter to A. Vasiu, Nov. 30, 2011, 2011 http://publications.ias.edu/deligne/paper/2653 | MR

[5] Deligne P., Milne J.S., “Tannakian categories”, Hodge cycles, motives, and Shimura varieties, Lect. Notes Math., 900, Springer, Berlin, 1982, 101–228 | DOI | MR

[6] Esnault H., Hai P.H., Sun X., “On Nori's fundamental group scheme”, Geometry and dynamics of groups and spaces, Prog. Math., 265, Birkhäuser, Basel, 2008, 377–398 | DOI | MR | Zbl

[7] Grothendieck A., “Sur quelques points d'algèbre homologique”, Tohoku Math. J. Ser. 2, 9 (1957), 119–221 | MR | Zbl

[8] Grothendieck A., Revêtements étales et groupe fondamental, Fasc. I, Exp. I–V, Séminaire de géométrie algébrique 1960/61, Inst. Hautes Étud. Sci., Paris, 1963 | MR

[9] Hochschild G., “Cohomology of algebraic linear groups”, Ill. J. Math., 5 (1961), 492–519 | MR | Zbl

[10] Jannsen U., Mixed motives and algebraic $K$-theory, With appendices by S. Bloch, C. Schoen, Lect. Notes Math., 1400, Springer, Berlin, 1990 | DOI | MR | Zbl

[11] Kennison J.F., “The fundamental group of a topos”, J. Pure Appl. Algebra, 30:1 (1983), 23–38 | DOI | MR | Zbl

[12] Kucharczyk R.A., Scholze P., “Topological realisations of absolute Galois groups”, Cohomology of arithmetic groups, Springer Proc. Math. Stat., 245, Springer, Cham, 2018, 201–288 | MR | Zbl

[13] Lubotzky A., Magid A.R., “Unipotent and prounipotent groups: cohomology and presentations”, Bull. Amer. Math. Soc., 7:1 (1982), 251–254 | DOI | MR | Zbl

[14] Nori M.V., “The fundamental group-scheme”, Proc. Indian Acad. Sci., Math. Sci., 91:2 (1982), 73–122 | DOI | MR | Zbl

[15] Pridham J., “The pro-unipotent radical of the pro-algebraic fundamental group of a compact Kähler manifold”, Ann. Fac. Sci. Toulouse. Math. Sér. 6, 16:1 (2007), 147–178 | DOI | MR | Zbl

[16] Simpson C.T., “Higgs bundles and local systems”, Publ. math. Inst. hautes étud. sci., 75 (1992), 5–95 | DOI | MR | Zbl

[17] Waterhouse W.C., Introduction to affine group schemes, Grad. Texts Math., 66, Springer, New York, 1979 | DOI | MR | Zbl

[18] Wibmer M., A remark on torsors for affine group schemes, E-print, 2022, arXiv: 2203.16115