Heights via $p$-Adic Points
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 46-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a paper published in 1980, the author gave an adelic Tamagawa number interpretation for the Birch and Swinnerton-Dyer conjecture for divisors on abelian varieties. Some years later, in joint work with K. Kato, a more general adelic volume interpretation for zeta values of motives with weights ${}\,{-1}$ was proposed. In the paper at hand, the adelic volume Tamagawa number conjecture is generalized to deal with weight $-1$. As in the paper with Kato, adelic points of varieties are replaced by cohomology with adelic coefficients. Further, we introduce adelic tori over the adelic cohomology groups to mimic the Néron–Severi tori in the 1980 paper.
@article{TRSPY_2023_320_a2,
     author = {Spencer Bloch},
     title = {Heights via $p${-Adic} {Points}},
     journal = {Informatics and Automation},
     pages = {46--58},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/}
}
TY  - JOUR
AU  - Spencer Bloch
TI  - Heights via $p$-Adic Points
JO  - Informatics and Automation
PY  - 2023
SP  - 46
EP  - 58
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/
LA  - ru
ID  - TRSPY_2023_320_a2
ER  - 
%0 Journal Article
%A Spencer Bloch
%T Heights via $p$-Adic Points
%J Informatics and Automation
%D 2023
%P 46-58
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/
%G ru
%F TRSPY_2023_320_a2
Spencer Bloch. Heights via $p$-Adic Points. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 46-58. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/

[1] Beilinson A., “Height pairing between algebraic cycles”, Current trends in arithmetical algebraic geometry, Proc. Summer Res. Conf. (Arcata/Calif., 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 1–24 | DOI | MR

[2] Beilinson A., Height pairing and nearby cycles, E-print, 2022, arXiv: 2301.02630

[3] Bloch S., “A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture”, Invent. math., 58 (1980), 65–76 | DOI | MR | Zbl

[4] Bloch S., “Height pairings for algebraic cycles”, J. Pure Appl. Algebra, 34 (1984), 119–145 | DOI | MR | Zbl

[5] Bloch S., Kato K., “$L$-functions and Tamagawa numbers of motives”, The Grothendieck Festschrift: A collection of articles written in honor of the 60th birthday of Alexander Grothendieck, v. I, Prog. Math., 86, Birkhäuser, Boston, 2007, 333–400 | DOI | MR

[6] Deligne P., “Théorie de Hodge. II”, Publ. math. Inst. hautes étud. sci., 40 (1971), 5–57 | DOI | MR | Zbl

[7] Faltings G., “$p$-Adic Hodge theory”, J. Amer. Math. Soc., 1:1 (1988), 255–299 | MR | Zbl

[8] Lang S., Fundamentals of Diophantine geometry, Springer, New York, 1983 | MR | Zbl

[9] Neukirch J., Schmidt A., Wingberg K., Cohomology of number fields, Grundl. Math. Wiss., 323, Springer, Berlin, 2008 | MR | Zbl

[10] Tate J.T., “$p$-Divisible groups”, Proc. Conf. on Local Fields: NUFFIC Summer Sch. (Driebergen, 1966), Springer, Berlin, 1967, 158–183 | DOI | MR