Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_320_a2, author = {Spencer Bloch}, title = {Heights via $p${-Adic} {Points}}, journal = {Informatics and Automation}, pages = {46--58}, publisher = {mathdoc}, volume = {320}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/} }
Spencer Bloch. Heights via $p$-Adic Points. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 46-58. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a2/
[1] Beilinson A., “Height pairing between algebraic cycles”, Current trends in arithmetical algebraic geometry, Proc. Summer Res. Conf. (Arcata/Calif., 1985), Contemp. Math., 67, Amer. Math. Soc., Providence, RI, 1987, 1–24 | DOI | MR
[2] Beilinson A., Height pairing and nearby cycles, E-print, 2022, arXiv: 2301.02630
[3] Bloch S., “A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture”, Invent. math., 58 (1980), 65–76 | DOI | MR | Zbl
[4] Bloch S., “Height pairings for algebraic cycles”, J. Pure Appl. Algebra, 34 (1984), 119–145 | DOI | MR | Zbl
[5] Bloch S., Kato K., “$L$-functions and Tamagawa numbers of motives”, The Grothendieck Festschrift: A collection of articles written in honor of the 60th birthday of Alexander Grothendieck, v. I, Prog. Math., 86, Birkhäuser, Boston, 2007, 333–400 | DOI | MR
[6] Deligne P., “Théorie de Hodge. II”, Publ. math. Inst. hautes étud. sci., 40 (1971), 5–57 | DOI | MR | Zbl
[7] Faltings G., “$p$-Adic Hodge theory”, J. Amer. Math. Soc., 1:1 (1988), 255–299 | MR | Zbl
[8] Lang S., Fundamentals of Diophantine geometry, Springer, New York, 1983 | MR | Zbl
[9] Neukirch J., Schmidt A., Wingberg K., Cohomology of number fields, Grundl. Math. Wiss., 323, Springer, Berlin, 2008 | MR | Zbl
[10] Tate J.T., “$p$-Divisible groups”, Proc. Conf. on Local Fields: NUFFIC Summer Sch. (Driebergen, 1966), Springer, Berlin, 1967, 158–183 | DOI | MR