Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_320_a13, author = {Nikolay A. Tyurin}, title = {Example of a {Moduli} {Space} of $D${-Exact} {Lagrangian} {Submanifolds:} {Spheres} in the {Flag} {Variety} for $\mathbb C^3$}, journal = {Informatics and Automation}, pages = {311--323}, publisher = {mathdoc}, volume = {320}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/} }
TY - JOUR AU - Nikolay A. Tyurin TI - Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$ JO - Informatics and Automation PY - 2023 SP - 311 EP - 323 VL - 320 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/ LA - ru ID - TRSPY_2023_320_a13 ER -
%0 Journal Article %A Nikolay A. Tyurin %T Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$ %J Informatics and Automation %D 2023 %P 311-323 %V 320 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/ %G ru %F TRSPY_2023_320_a13
Nikolay A. Tyurin. Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 311-323. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/
[1] Auroux D., “Asymptotically holomorphic families of symplectic submanifolds”, Geom. Funct. Anal, 7:6 (1997), 971–995 | DOI | MR | Zbl
[2] Cieliebak K., Eliashberg Ya., From Stein to Weinstein and back: Symplectic geometry of affine complex manifolds, Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl
[3] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl
[4] Nohara Y., Ueda K., Floer cohomologies of non-torus fibers of the Gelfand–Cetlin system, E-print, 2014, arXiv: 1409.4049 | MR
[5] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theor. Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl
[6] N. A. Tyurin, “On Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 98:1–2 (2015), 348–351 | DOI | DOI | MR | Zbl
[7] N. A. Tyurin, “The moduli space of $D$-exact Lagrangian submanifolds”, Sib. Math. J., 60:4 (2019), 709–719 | DOI | MR | Zbl