Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 311-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

In previous papers we proposed a construction of the moduli space of $D$-exact Lagrangian submanifolds in algebraic varieties with respect to a very ample divisor. The points of the moduli space are Hamiltonian equivalence classes of Lagrangian submanifolds in the complements $X\setminus D$, where $D$ is a divisor from a complete linear system; by the very definition this moduli space is a covering of an open subset in the projective space $|D|$. We showed that these moduli spaces are smooth and Kähler, and we proposed a way to distinguish, in such a moduli space, certain stable components whose main supposed property is to be algebraic. In the present paper we find the stable component of the moduli space of Lagrangian spheres in the flag variety with an ample divisor equal to half the anticanonical bundle, and show that this component is an algebraic variety itself.
@article{TRSPY_2023_320_a13,
     author = {Nikolay A. Tyurin},
     title = {Example of a {Moduli} {Space} of $D${-Exact} {Lagrangian} {Submanifolds:} {Spheres} in the {Flag} {Variety} for $\mathbb C^3$},
     journal = {Informatics and Automation},
     pages = {311--323},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/}
}
TY  - JOUR
AU  - Nikolay A. Tyurin
TI  - Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$
JO  - Informatics and Automation
PY  - 2023
SP  - 311
EP  - 323
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/
LA  - ru
ID  - TRSPY_2023_320_a13
ER  - 
%0 Journal Article
%A Nikolay A. Tyurin
%T Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$
%J Informatics and Automation
%D 2023
%P 311-323
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/
%G ru
%F TRSPY_2023_320_a13
Nikolay A. Tyurin. Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 311-323. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a13/

[1] Auroux D., “Asymptotically holomorphic families of symplectic submanifolds”, Geom. Funct. Anal, 7:6 (1997), 971–995 | DOI | MR | Zbl

[2] Cieliebak K., Eliashberg Ya., From Stein to Weinstein and back: Symplectic geometry of affine complex manifolds, Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl

[3] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl

[4] Nohara Y., Ueda K., Floer cohomologies of non-torus fibers of the Gelfand–Cetlin system, E-print, 2014, arXiv: 1409.4049 | MR

[5] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theor. Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl

[6] N. A. Tyurin, “On Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 98:1–2 (2015), 348–351 | DOI | DOI | MR | Zbl

[7] N. A. Tyurin, “The moduli space of $D$-exact Lagrangian submanifolds”, Sib. Math. J., 60:4 (2019), 709–719 | DOI | MR | Zbl