Jordan Property for the Cremona Group over a Finite Field
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 298-310
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the Cremona group of rank $2$ over a finite field is Jordan, and provide an upper bound for its Jordan constant which is sharp when the number of elements in the field is different from $2$, $4$, and $8$.
@article{TRSPY_2023_320_a12,
author = {Yuri G. Prokhorov and Constantin A. Shramov},
title = {Jordan {Property} for the {Cremona} {Group} over a {Finite} {Field}},
journal = {Informatics and Automation},
pages = {298--310},
publisher = {mathdoc},
volume = {320},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a12/}
}
Yuri G. Prokhorov; Constantin A. Shramov. Jordan Property for the Cremona Group over a Finite Field. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 298-310. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a12/