Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_320_a11, author = {V. L. Popov}, title = {Embeddings of {Automorphism} {Groups} of {Free} {Groups} into {Automorphism} {Groups} of {Affine} {Algebraic} {Varieties}}, journal = {Informatics and Automation}, pages = {287--297}, publisher = {mathdoc}, volume = {320}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a11/} }
TY - JOUR AU - V. L. Popov TI - Embeddings of Automorphism Groups of Free Groups into Automorphism Groups of Affine Algebraic Varieties JO - Informatics and Automation PY - 2023 SP - 287 EP - 297 VL - 320 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a11/ LA - ru ID - TRSPY_2023_320_a11 ER -
V. L. Popov. Embeddings of Automorphism Groups of Free Groups into Automorphism Groups of Affine Algebraic Varieties. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 287-297. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a11/
[1] Borel A., Linear algebraic groups, Grad. Texts Math., 126, Springer, New York, 1991 | DOI | MR | Zbl
[2] Formanek E., Procesi C., “The automorphism group of a free group is not linear”, J. Algebra, 149:2 (1992), 494–499 ; Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | DOI | MR | Zbl
[3] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts Math., 21, Springer, New York, 1975 | DOI | MR | Zbl
[4] Krammer D., “Braid groups are linear”, Ann. Math. Ser. 2, 155:1 (2002), 131–156 | DOI | MR | Zbl
[5] Luna D., “Sur les orbites fermées des groupes algébriques réductifs”, Invent. math., 16 (1972), 1–5 | DOI | MR | Zbl
[6] Luna D., “Slices étalés”, Bull. Soc. math. France. Suppl. Mém., 33 (1973), 81–105 ; Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | Zbl
[7] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergebn. Math. Grenzgeb., 89, Springer, Berlin, 1977 ; Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | Zbl
[8] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Pure Appl. Math., 13, Interscience, New York, 1966 | MR | Zbl
[9] Mumford D., Fogarty J., Geometric invariant theory, Ergebn. Math. Grenzgeb., 34, 2nd ed., Springer, Berlin, 1982 | MR | Zbl
[10] V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR, Sb., 63:2 (1989), 375–392 | DOI | MR | Zbl
[11] Popov V.L., Embeddings of groups $\mathrm {Aut}(F_n)$ into automorphism groups of algebraic varieties, E-print, 2021, arXiv: 2106.02072
[12] V. L. Popov and E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV: Linear Algebraic Groups, Invariant Theory, Encycl. Math. Sci., 55, Springer, Berlin, 1994, 123–278
[13] Rosenlicht M., “Toroidal algebraic groups”, Proc. Amer. Math. Soc., 12 (1961), 984–988 | DOI | MR | Zbl
[14] Serre J.-P., “Espaces fibrés algébriques”, Séminaire C. Chevalley (2e année), Exp. 1, v. 3, Anneaux de Chow et applications, Secr. Math., Paris, 1958, 1–37 | MR
[15] Serre J.-P., Algebraic groups and class fields, Grad. Texts Math., 117, Springer, New York, 1997 | MR
[16] Steinberg R., “Regular elements of semisimple algebraic groups”, Publ. math. Inst. hautes étud. sci., 25 (1965), 49–80 | DOI | MR