New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.
@article{TRSPY_2023_320_a10,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {New {Results} on the {Periodicity} {Problem} for {Continued} {Fractions} of {Elements} of {Hyperelliptic} {Fields}},
     journal = {Informatics and Automation},
     pages = {278--286},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a10/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
JO  - Informatics and Automation
PY  - 2023
SP  - 278
EP  - 286
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a10/
LA  - ru
ID  - TRSPY_2023_320_a10
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields
%J Informatics and Automation
%D 2023
%P 278-286
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a10/
%G ru
%F TRSPY_2023_320_a10
V. P. Platonov; M. M. Petrunin. New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 278-286. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a10/