Simple Complex Tori of Algebraic Dimension 0
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 27-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Galois theory, we explicitly construct (in all complex dimensions $g\ge 2$) an infinite family of simple $g$-dimensional complex tori $T$ that enjoy the following properties: $\bullet $ the Picard number of $T$ is $0;$ in particular, the algebraic dimension of $T$ is $0$; $\bullet $ if $T^\vee $ is the dual of $T$, then $\mathrm {Hom}(T,T^\vee )=\{0\}$; $\bullet $ the automorphism group $\mathrm {Aut}(T)$ of $T$ is isomorphic to $\{\pm 1\} \times \mathbb Z^{g-1}$; $\bullet $ the endomorphism algebra $\mathrm {End}^0(T)$ of $T$ is a purely imaginary number field of degree $2g$.
Keywords: complex tori
Mots-clés : algebraic dimension 0.
@article{TRSPY_2023_320_a1,
     author = {Tatiana Bandman and Yuri G. Zarhin},
     title = {Simple {Complex} {Tori} of {Algebraic} {Dimension} 0},
     journal = {Informatics and Automation},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a1/}
}
TY  - JOUR
AU  - Tatiana Bandman
AU  - Yuri G. Zarhin
TI  - Simple Complex Tori of Algebraic Dimension 0
JO  - Informatics and Automation
PY  - 2023
SP  - 27
EP  - 45
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a1/
LA  - ru
ID  - TRSPY_2023_320_a1
ER  - 
%0 Journal Article
%A Tatiana Bandman
%A Yuri G. Zarhin
%T Simple Complex Tori of Algebraic Dimension 0
%J Informatics and Automation
%D 2023
%P 27-45
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a1/
%G ru
%F TRSPY_2023_320_a1
Tatiana Bandman; Yuri G. Zarhin. Simple Complex Tori of Algebraic Dimension 0. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 27-45. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a1/

[1] Bandman T., Zarhin Yu.G., “Bimeromorphic automorphism groups of certain $\mathbb P^1$-bundles”, Eur. J. Math., 7:2 (2021), 641–670 | DOI | MR | Zbl

[2] Barth W.P., Hulek K., Peters C.A.M., Van de Ven A., Compact complex surfaces, Ergeb. Math. Grenzgeb. 3. Folge, 4, Springer, Berlin, 2004 | MR | Zbl

[3] Birkenhake C., Lange H., Complex tori, Prog. Math., 177, Birkhäuser, Boston, 1999 | MR | Zbl

[4] Birkenhake C., Lange H., Complex abelian varieties, Grundl. Math. Wiss., 302, 2nd ed., Springer, Berlin, 2004 | MR | Zbl

[5] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic, New York, 1986 | MR

[6] Campana F., Demailly J.-P., Verbitsky M., “Compact Kähler 3-manifolds without nontrivial subvarieties”, Algebr. Geom., 1:2 (2014), 131–139 | DOI | MR | Zbl

[7] Cao Y., “Approximation forte pour les variétés avec une action d'un groupe linéaire”, Compos. math., 154:4 (2018), 773–819 | DOI | MR | Zbl

[8] Coleman R.F., “On the Galois groups of the exponential Taylor polynomials”, Enseign. math. Sér. 2, 33 (1987), 183–189 | MR | Zbl

[9] Dethloff G., Grauert H., “Seminormal complex spaces”, Several complex variables. VII: Sheaf-theoretical methods in complex analysis, Encycl. Math. Sci., 74, Springer, Berlin, 1984, 183–220 | MR

[10] Elencwajg G., Forster O., “Vector bundles on manifolds without divisors and a theorem on deformations”, Ann. Inst. Fourier, 32:4 (1982), 25–51 | DOI | MR | Zbl

[11] D. K. Faddeev and I. S. Sominsky, Problems in Higher Algebra, Mir, Moscow, 1972 | MR | MR

[12] Fröhlich A., Taylor M.J., Algebraic number theory, Cambridge Stud. Adv. Math., 27, Cambridge University Press, Cambridge, 1991 | MR

[13] Gao S., “Absolute irreducibility of polynomials via Newton polytopes”, J. Algebra, 237:2 (2001), 501–520 | DOI | MR | Zbl

[14] Graf P., Schwald M., “On the Kodaira problem for uniruled Kähler spaces”, Ark. Mat., 58:2 (2020), 267–284 | DOI | MR | Zbl

[15] Harder G., Lectures on algebraic geometry. I: Sheaves, cohomology of sheaves, and applications to Riemann surfaces, 2nd ed., Vieweg, Wiesbaden, 2011 | MR | Zbl

[16] Kempf G.R., Complex abelian varieties and theta functions, Springer, Berlin, 1991 | MR | Zbl

[17] Lang S., Complex multiplication, Grundl. Math. Wiss., 255, Springer, New York, 1983 | MR | Zbl

[18] Lang S., Algebra, Grad. Texts Math., 211, 3rd ed., Springer, New York, 2002 | DOI | MR | Zbl

[19] Lenstra H.W., Jr., Oort F., “Simple abelian varieties having a prescribed formal isogeny type”, J. Pure Appl. Algebra, 4 (1974), 47–53 | DOI | MR | Zbl

[20] McMullen C.T., “Dynamics on K3 surfaces: Salem numbers and Siegel disks”, J. reine angew. Math., 545 (2002), 201–233 | MR | Zbl

[21] Mori S., “The endomorphism rings of some abelian varieties. II”, Jpn. J. Math., 3:1 (1977), 105–109 | DOI | MR | Zbl

[22] Mott J.L., “Eisenstein-type irreducibility criteria”, Zero-dimensional commutative rings, Proc. 1994 J.H. Barrett mem. lect. conf. on commutative ring theory (Knoxville, TN, 1994), Lect. Notes Pure Appl. Math., 171, ed. by D.F. Anderson, D.E. Dobbs, M. Dekker, New York, 1995, 307–329 | MR | Zbl

[23] Mumford D., Abelian varieties, 2nd ed., Oxford Univ. Press, London, 1974 | MR | Zbl

[24] Narasimhan R., Introduction to the theory of analytic spaces, Lect. Notes Math., 25, Springer, Berlin, 1966 | DOI | MR | Zbl

[25] Nart E., Vila N., “Equations of the type $x^n+ax+b$ with absolute Galois group $S_n$”, Proc. Sixth Conf. Portuguese and Spanish Mathematicians, Pt. II (Santander, 1979), Rev. Univ. Santander, 2, Pt. 2, Univ. Santander, Santander, 1979, 821–825 | MR

[26] Oort F., “The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field”, J. Pure Appl. Algebra, 3 (1973), 399–408 | DOI | MR | Zbl

[27] Oort F., Zarhin Yu., “Endomorphism algebras of complex tori”, Math. Ann., 303:1 (1995), 11–29 | DOI | MR | Zbl

[28] Orr M., Skorobogatov A.N., Valloni D., Zarhin Yu.G., “Invariant Brauer group of an abelian variety”, Isr. J. Math., 249:2 (2022), 695–733 | DOI | MR | Zbl

[29] Osada H., “The Galois groups of the polynomials $X^n+aX^l+b$”, J. Number Theory, 25:2 (1987), 230–238 | DOI | MR | Zbl

[30] Passman D.S., Permutation groups, W.A. Benjamin, New York, 1968 | MR | Zbl

[31] Peternell Th., “Modifications”, Several complex variables. VII: Sheaf-theoretical methods in complex analysis, Encycl. Math. Sci., 74, Springer, Berlin, 1984, 285–317 | MR

[32] Remmert R., “Holomorphe und meromorphe Abbildungen komplexer Räume”, Math. Ann., 133 (1957), 328–370 | DOI | MR | Zbl

[33] Selmer E.S., “On the irreducibility of certain trinomials”, Math. Scand., 4 (1956), 287–302 | DOI | MR | Zbl

[34] Ueno K., Classification theory of algebraic varieties and compact complex spaces, Lect. Notes Math., 439, Springer, Berlin, 1975 | DOI | MR | Zbl

[35] Voisin C., “On the homotopy types of compact Kähler and complex projective manifolds”, Invent. math., 157:2 (2004), 329–343 | DOI | MR | Zbl

[36] Voisin C., “On the homotopy types of Kähler manifolds and the birational Kodaira problem”, J. Diff. Geom., 72:1 (2006), 43–71 | MR | Zbl

[37] Yu. G. Zarhin, “Homomorphisms of hyperelliptic Jacobians”, Proc. Steklov Inst. Math., 241 (2003), 79–92 | MR | Zbl

[38] Zarhin Yu.G., “Galois groups of Mori trinomials and hyperelliptic curves with big monodromy”, Eur. J. Math., 2:1 (2016), 360–381 | DOI | MR | Zbl