Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_320_a0, author = {Konstantin Ardakov and Peter Schneider}, title = {The {Bernstein} {Centre} in {Natural} {Characteristic}}, journal = {Informatics and Automation}, pages = {5--26}, publisher = {mathdoc}, volume = {320}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/} }
Konstantin Ardakov; Peter Schneider. The Bernstein Centre in Natural Characteristic. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 5-26. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/
[1] Ardakov K., “The centre of completed group algebras of pro-$p$ groups”, Doc. math., 9 (2004), 599–606 | DOI | MR | Zbl
[2] Bernstein J.-N., “Le “centre” de Bernstein (rédigé par P. Deligne)”, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984, 1–32 | MR
[3] Bosch S., Güntzer U., Remmert R., Non-Archimedean analysis: A systematic approach to rigid analytic geometry, Grundl. Math. Wiss., 261, Springer, Berlin, 1984 | MR | Zbl
[4] Bourbaki N., General topology, Chapters 1–4, Elements of Mathematics, Springer, Berlin, 1995 | MR
[5] Breuil C., Herzig F., Hu Y., Morra S., Schraen B., Conjectures and results on modular representations of $\mathrm {GL}_n(K)$ for a $p$-adic field $K$, E-print, 2021, arXiv: 2102.06188
[6] Breuil C., Paškūnas V., Towards a modulo $p$ Langlands correspondence for $\mathrm {GL}_2$, Mem. AMS, 216, no. 1016, Amer. Math. Soc., Providence, RI, 2012 | MR
[7] Demazure M., Gabriel P., Groupes algébriques. T. I: Géométrie algébrique. Généralités. Groupes commutatifs, North-Holland, Amsterdam, 1970 | MR
[8] Dotto A., Mod $p$ Bernstein centres of $p$-adic groups, E-print, 2021, arXiv: 2105.09367
[9] Green B., Pop F., Roquette P., “On Rumely's local–global principle”, Jahresber. Dtsch. Math.-Ver., 97 (1995), 43–74 | MR | Zbl
[10] Henniart G., “Représentations des groupes réductifs $p$-adiques”, Séminaire Bourbaki 1990/91, Exp. 736, Astérisque, 201–203, Soc. math. France, Paris, 1991, 193–219 | MR
[11] Kelley J.L., General topology, Grad. Texts Math., 27, Springer, Berlin, 1975 | MR | Zbl
[12] Positselski L., “Smooth duality and co-contra correspondence”, J. Lie Theory, 30:1 (2020), 85–144 | MR | Zbl
[13] Schneider P., “Smooth representations and Hecke modules in characteristic $p$”, Pac. J. Math., 279 (2015), 447–464 | DOI | MR | Zbl
[14] Serre J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, Lect. Notes Math., 1500, Springer, Berlin, 1992 | DOI | MR | Zbl
[15] The Stacks project https://stacks.math.columbia.edu/tag/04KV
[16] Vignéras M.-F., Représentations $l$-modulaires d'un groupe réductif $p$-adique avec $l\neq p$, Prog. Math., 137, Birkhäuser, Boston, 1996 | MR
[17] Vignéras M.-F., “Representations modulo $p$ of the $p$-adic group $GL(2,F)$”, Compos. math., 140:2 (2004), 333–358 | DOI | MR | Zbl
[18] Wilson J.S., Profinite groups, LMS Monogr. New Ser., 19, Clarendon Press, Oxford, 1998 | MR | Zbl