The Bernstein Centre in Natural Characteristic
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 5-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a locally profinite group and let $k$ be a field of positive characteristic $p$. Let $Z(G)$ denote the centre of $G$ and let $\mathfrak Z(G)$ denote the Bernstein centre of $G$, that is, the $k$-algebra of natural endomorphisms of the identity functor on the category of smooth $k$-linear representations of $G$. We show that if $G$ contains an open pro-$p$ subgroup but no proper open centralisers, then there is a natural isomorphism of $k$-algebras $\mathfrak Z(Z(G)) \xrightarrow {\cong } \mathfrak Z(G)$. We also describe $\mathfrak Z(Z(G))$ explicitly as a particular completion of the abstract group ring $k[Z(G)]$. Both conditions on $G$ are satisfied whenever $G$ is the group of points of any connected smooth algebraic group defined over a local field of residue characteristic $p$. In particular, when the algebraic group is semisimple, we show that $\mathfrak Z(G) = k[Z(G)]$.
@article{TRSPY_2023_320_a0,
     author = {Konstantin Ardakov and Peter Schneider},
     title = {The {Bernstein} {Centre} in {Natural} {Characteristic}},
     journal = {Informatics and Automation},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/}
}
TY  - JOUR
AU  - Konstantin Ardakov
AU  - Peter Schneider
TI  - The Bernstein Centre in Natural Characteristic
JO  - Informatics and Automation
PY  - 2023
SP  - 5
EP  - 26
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/
LA  - ru
ID  - TRSPY_2023_320_a0
ER  - 
%0 Journal Article
%A Konstantin Ardakov
%A Peter Schneider
%T The Bernstein Centre in Natural Characteristic
%J Informatics and Automation
%D 2023
%P 5-26
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/
%G ru
%F TRSPY_2023_320_a0
Konstantin Ardakov; Peter Schneider. The Bernstein Centre in Natural Characteristic. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 5-26. http://geodesic.mathdoc.fr/item/TRSPY_2023_320_a0/

[1] Ardakov K., “The centre of completed group algebras of pro-$p$ groups”, Doc. math., 9 (2004), 599–606 | DOI | MR | Zbl

[2] Bernstein J.-N., “Le “centre” de Bernstein (rédigé par P. Deligne)”, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984, 1–32 | MR

[3] Bosch S., Güntzer U., Remmert R., Non-Archimedean analysis: A systematic approach to rigid analytic geometry, Grundl. Math. Wiss., 261, Springer, Berlin, 1984 | MR | Zbl

[4] Bourbaki N., General topology, Chapters 1–4, Elements of Mathematics, Springer, Berlin, 1995 | MR

[5] Breuil C., Herzig F., Hu Y., Morra S., Schraen B., Conjectures and results on modular representations of $\mathrm {GL}_n(K)$ for a $p$-adic field $K$, E-print, 2021, arXiv: 2102.06188

[6] Breuil C., Paškūnas V., Towards a modulo $p$ Langlands correspondence for $\mathrm {GL}_2$, Mem. AMS, 216, no. 1016, Amer. Math. Soc., Providence, RI, 2012 | MR

[7] Demazure M., Gabriel P., Groupes algébriques. T. I: Géométrie algébrique. Généralités. Groupes commutatifs, North-Holland, Amsterdam, 1970 | MR

[8] Dotto A., Mod $p$ Bernstein centres of $p$-adic groups, E-print, 2021, arXiv: 2105.09367

[9] Green B., Pop F., Roquette P., “On Rumely's local–global principle”, Jahresber. Dtsch. Math.-Ver., 97 (1995), 43–74 | MR | Zbl

[10] Henniart G., “Représentations des groupes réductifs $p$-adiques”, Séminaire Bourbaki 1990/91, Exp. 736, Astérisque, 201–203, Soc. math. France, Paris, 1991, 193–219 | MR

[11] Kelley J.L., General topology, Grad. Texts Math., 27, Springer, Berlin, 1975 | MR | Zbl

[12] Positselski L., “Smooth duality and co-contra correspondence”, J. Lie Theory, 30:1 (2020), 85–144 | MR | Zbl

[13] Schneider P., “Smooth representations and Hecke modules in characteristic $p$”, Pac. J. Math., 279 (2015), 447–464 | DOI | MR | Zbl

[14] Serre J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, Lect. Notes Math., 1500, Springer, Berlin, 1992 | DOI | MR | Zbl

[15] The Stacks project https://stacks.math.columbia.edu/tag/04KV

[16] Vignéras M.-F., Représentations $l$-modulaires d'un groupe réductif $p$-adique avec $l\neq p$, Prog. Math., 137, Birkhäuser, Boston, 1996 | MR

[17] Vignéras M.-F., “Representations modulo $p$ of the $p$-adic group $GL(2,F)$”, Compos. math., 140:2 (2004), 333–358 | DOI | MR | Zbl

[18] Wilson J.S., Profinite groups, LMS Monogr. New Ser., 19, Clarendon Press, Oxford, 1998 | MR | Zbl