Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present conditions for weighted integrability of the Fourier transforms of convolutions of functions in Lorentz and Lebesgue spaces. We also obtain quantitative estimates related to this integrability. The results are shown to be sharp.
@article{TRSPY_2022_319_a7,
     author = {B. I. Golubov and S. S. Volosivets},
     title = {Fourier {Transforms} of {Convolutions} of {Functions} in {Lebesgue} and {Lorentz} {Spaces}},
     journal = {Informatics and Automation},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/}
}
TY  - JOUR
AU  - B. I. Golubov
AU  - S. S. Volosivets
TI  - Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
JO  - Informatics and Automation
PY  - 2022
SP  - 94
EP  - 105
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/
LA  - ru
ID  - TRSPY_2022_319_a7
ER  - 
%0 Journal Article
%A B. I. Golubov
%A S. S. Volosivets
%T Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
%J Informatics and Automation
%D 2022
%P 94-105
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/
%G ru
%F TRSPY_2022_319_a7
B. I. Golubov; S. S. Volosivets. Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 94-105. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/

[1] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR

[2] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR

[3] Booton B., “Rearrangements of general monotone functions and of their Fourier transforms”, Math. Inequal. Appl., 21:3 (2018), 871–883 | MR

[4] Butzer P.L., Nessel R.J., Fourier analysis and approximation, v. 1, One-dimensional theory, Birkhäuser, Basel, 1971 | MR

[5] Golubov B.I., Volosivets S.S., “Fourier transforms of multiplicative convolutions”, Industrial mathematics and complex systems: Emerging mathematical models, methods and algorithms. Based on Int. Conf. (Greater Noida, India, 2016), ed. by P. Manchanda et al., Springer, Singapore, 2017, 129–140 | MR

[6] Gorbachev D., Liflyand E., Tikhonov S., “Weighted Fourier inequalities: Boas' conjecture in $\mathbb R^n$”, J. anal. math., 114:1 (2011), 99–120 | DOI | MR

[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Univ. Press, Cambridge, 1934 | MR

[8] Ilyasov N.A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:1 (2004), 113–120 | MR

[9] Ilyasov N.A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series (the second report)”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:4 (2004), 135–142 | MR

[10] Ilyasov N.A., “Skorostnaya $L_p$-versiya kriteriya M. Rissa absolyutnoi skhodimosti trigonometricheskikh ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 193–202

[11] Izumi M., Izumi S.-I., “Absolute convergence of Fourier series of convolution functions”, J. Approx. Theory, 1:1 (1968), 103–109 | DOI | MR

[12] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44:1 (1958), 53–84

[13] Krayukhin S.A., Volosivets S.S., “Functions of bounded $p$-variation and weighted integrability of Fourier transforms”, Acta math. Hung., 159:2 (2019), 374–399 | DOI | MR

[14] S. G. Kreĭn, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr., 54, Am. Math. Soc, Providence, RI, 1982 | MR

[15] Liflyand E., Tikhonov S., “Extended solution of Boas' conjecture on Fourier transforms”, C. r. Math. Acad. sci. Paris, 346:21–22 (2008), 1137–1142 | DOI | MR

[16] Lorentz G.G., “Some new functional spaces”, Ann. Math. Ser. 2, 51:1 (1950), 37–55 | DOI | MR

[17] O'Neil R., “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30:1 (1963), 129–142 | MR

[18] Onneweer C.W., “On absolutely convergent Fourier series”, Ark. Mat., 12 (1974), 51–58 | DOI | MR

[19] Sagher Y., “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54:1 (1976), 151–156 | DOI | MR

[20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[21] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, 1963 | MR

[22] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937 | MR

[23] Vladimirov V.S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR