Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_319_a7, author = {B. I. Golubov and S. S. Volosivets}, title = {Fourier {Transforms} of {Convolutions} of {Functions} in {Lebesgue} and {Lorentz} {Spaces}}, journal = {Informatics and Automation}, pages = {94--105}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/} }
TY - JOUR AU - B. I. Golubov AU - S. S. Volosivets TI - Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces JO - Informatics and Automation PY - 2022 SP - 94 EP - 105 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/ LA - ru ID - TRSPY_2022_319_a7 ER -
B. I. Golubov; S. S. Volosivets. Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 94-105. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/
[1] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR
[2] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR
[3] Booton B., “Rearrangements of general monotone functions and of their Fourier transforms”, Math. Inequal. Appl., 21:3 (2018), 871–883 | MR
[4] Butzer P.L., Nessel R.J., Fourier analysis and approximation, v. 1, One-dimensional theory, Birkhäuser, Basel, 1971 | MR
[5] Golubov B.I., Volosivets S.S., “Fourier transforms of multiplicative convolutions”, Industrial mathematics and complex systems: Emerging mathematical models, methods and algorithms. Based on Int. Conf. (Greater Noida, India, 2016), ed. by P. Manchanda et al., Springer, Singapore, 2017, 129–140 | MR
[6] Gorbachev D., Liflyand E., Tikhonov S., “Weighted Fourier inequalities: Boas' conjecture in $\mathbb R^n$”, J. anal. math., 114:1 (2011), 99–120 | DOI | MR
[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Univ. Press, Cambridge, 1934 | MR
[8] Ilyasov N.A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:1 (2004), 113–120 | MR
[9] Ilyasov N.A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series (the second report)”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 24:4 (2004), 135–142 | MR
[10] Ilyasov N.A., “Skorostnaya $L_p$-versiya kriteriya M. Rissa absolyutnoi skhodimosti trigonometricheskikh ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 193–202
[11] Izumi M., Izumi S.-I., “Absolute convergence of Fourier series of convolution functions”, J. Approx. Theory, 1:1 (1968), 103–109 | DOI | MR
[12] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44:1 (1958), 53–84
[13] Krayukhin S.A., Volosivets S.S., “Functions of bounded $p$-variation and weighted integrability of Fourier transforms”, Acta math. Hung., 159:2 (2019), 374–399 | DOI | MR
[14] S. G. Kreĭn, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr., 54, Am. Math. Soc, Providence, RI, 1982 | MR
[15] Liflyand E., Tikhonov S., “Extended solution of Boas' conjecture on Fourier transforms”, C. r. Math. Acad. sci. Paris, 346:21–22 (2008), 1137–1142 | DOI | MR
[16] Lorentz G.G., “Some new functional spaces”, Ann. Math. Ser. 2, 51:1 (1950), 37–55 | DOI | MR
[17] O'Neil R., “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30:1 (1963), 129–142 | MR
[18] Onneweer C.W., “On absolutely convergent Fourier series”, Ark. Mat., 12 (1974), 51–58 | DOI | MR
[19] Sagher Y., “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54:1 (1976), 151–156 | DOI | MR
[20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[21] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, 1963 | MR
[22] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937 | MR
[23] Vladimirov V.S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR