Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 94-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We present conditions for weighted integrability of the Fourier transforms of convolutions of functions in Lorentz and Lebesgue spaces. We also obtain quantitative estimates related to this integrability. The results are shown to be sharp.
@article{TRSPY_2022_319_a7,
     author = {B. I. Golubov and S. S. Volosivets},
     title = {Fourier {Transforms} of {Convolutions} of {Functions} in {Lebesgue} and {Lorentz} {Spaces}},
     journal = {Informatics and Automation},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/}
}
TY  - JOUR
AU  - B. I. Golubov
AU  - S. S. Volosivets
TI  - Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
JO  - Informatics and Automation
PY  - 2022
SP  - 94
EP  - 105
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/
LA  - ru
ID  - TRSPY_2022_319_a7
ER  - 
%0 Journal Article
%A B. I. Golubov
%A S. S. Volosivets
%T Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces
%J Informatics and Automation
%D 2022
%P 94-105
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/
%G ru
%F TRSPY_2022_319_a7
B. I. Golubov; S. S. Volosivets. Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 94-105. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a7/