On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $\{f_n(t)\}_{n=-m+2}^{\infty }$ is an orthonormal system in $L^2[0,1]$ consisting of splines of order $m$ with dyadic rational knots and $f(t)$ is an a.e. finite measurable function, then, first, there exists a series with respect to this system that converges absolutely a.e. to this function and, second, for any $\varepsilon >0$ the function $f(t)$ can be changed on a set of measure less than $\varepsilon $ so that the corrected function has a uniformly absolutely convergent Fourier series with respect to this system.
Keywords: spline of order $m$, absolutely convergent series, representation of functions, correction of functions.
@article{TRSPY_2022_319_a5,
     author = {G. G. Gevorkyan},
     title = {On the {Representation} of {Measurable} {Functions} by {Absolutely} {Convergent} {Orthogonal} {Spline} {Series}},
     journal = {Informatics and Automation},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a5/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
JO  - Informatics and Automation
PY  - 2022
SP  - 73
EP  - 82
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a5/
LA  - ru
ID  - TRSPY_2022_319_a5
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
%J Informatics and Automation
%D 2022
%P 73-82
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a5/
%G ru
%F TRSPY_2022_319_a5
G. G. Gevorkyan. On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a5/