Weak Limits of Consecutive Projections and of Greedy Steps
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 64-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a Hilbert space. We investigate the properties of weak limit points of iterates of random projections onto $K\geq 2$ closed convex sets in $H$ and the parallel properties of weak limit points of the residuals of random greedy approximation with respect to $K$ dictionaries. In the case of convex sets these properties imply weak convergence in all the cases known so far. In particular, we give a short proof of the theorem of Amemiya and Ando on weak convergence when the convex sets are subspaces. The question of weak convergence in general remains open.
Keywords: projections, greedy approximations, convex set, dictionary, Hilbert space.
@article{TRSPY_2022_319_a4,
     author = {Petr A. Borodin and Eva Kopeck\'a},
     title = {Weak {Limits} of {Consecutive} {Projections} and of {Greedy} {Steps}},
     journal = {Informatics and Automation},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a4/}
}
TY  - JOUR
AU  - Petr A. Borodin
AU  - Eva Kopecká
TI  - Weak Limits of Consecutive Projections and of Greedy Steps
JO  - Informatics and Automation
PY  - 2022
SP  - 64
EP  - 72
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a4/
LA  - ru
ID  - TRSPY_2022_319_a4
ER  - 
%0 Journal Article
%A Petr A. Borodin
%A Eva Kopecká
%T Weak Limits of Consecutive Projections and of Greedy Steps
%J Informatics and Automation
%D 2022
%P 64-72
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a4/
%G ru
%F TRSPY_2022_319_a4
Petr A. Borodin; Eva Kopecká. Weak Limits of Consecutive Projections and of Greedy Steps. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 64-72. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a4/