Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 51-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a domain $G\subset \mathbb R^n$ with an anisotropic peak, we construct integral representations of functions in terms of derivatives and establish conditions for the embedding $W_p^s(G)\subset L_q(G)$ of the Sobolev space in the Lebesgue space for $1\leq p$.
Keywords: Sobolev space, domain with a peak, embedding theorem.
@article{TRSPY_2022_319_a3,
     author = {O. V. Besov},
     title = {Conditions for {Embeddings} of {Sobolev} {Spaces} on a {Domain} with {Anisotropic} {Peak}},
     journal = {Informatics and Automation},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
JO  - Informatics and Automation
PY  - 2022
SP  - 51
EP  - 63
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/
LA  - ru
ID  - TRSPY_2022_319_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
%J Informatics and Automation
%D 2022
%P 51-63
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/
%G ru
%F TRSPY_2022_319_a3
O. V. Besov. Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 51-63. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/

[1] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | MR

[2] A. Yu. Golovko, “Density of smooth functions in anisotropic weighted Sobolev spaces with weights that are locally bounded and locally bounded away from zero”, Math. Notes, 109:5–6 (2021), 694–701 | DOI | MR

[3] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | MR

[4] Kufner A., Maligranda L., Person L.-E., The Hardy inequality: About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR

[5] Lorente M., “A characterization of two weight norm inequalities for one-sided operators of fractional type”, Can. J. Math., 49:5 (1997), 1010–1033 | DOI | MR

[6] V. G. Maz'ya and S. V. Poborchi, “Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains”, St. Petersburg Math. J., 18:4 (2007), 583–605 | DOI | MR

[7] Meskhi A., “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR

[8] Prokhorov D.V., “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 61:2 (2000), 617–628 | DOI | MR

[9] D. V. Prokhorov and V. D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR

[10] N. A. Rautian, “On the boundedness of a class of fractional type integral operators”, Sb. Math., 200:12 (2009), 1807–1832 | DOI | MR

[11] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Am. Math. Soc., Providence, RI, 1991 | MR | MR

[12] V. D. Stepanov, “Two-weighted estimates of Riemann–Liouville integrals”, Math. USSR, Izv., 36:3 (1991), 669–681 | DOI | MR