Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_319_a3, author = {O. V. Besov}, title = {Conditions for {Embeddings} of {Sobolev} {Spaces} on a {Domain} with {Anisotropic} {Peak}}, journal = {Informatics and Automation}, pages = {51--63}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/} }
O. V. Besov. Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 51-63. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a3/
[1] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | MR
[2] A. Yu. Golovko, “Density of smooth functions in anisotropic weighted Sobolev spaces with weights that are locally bounded and locally bounded away from zero”, Math. Notes, 109:5–6 (2021), 694–701 | DOI | MR
[3] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | MR
[4] Kufner A., Maligranda L., Person L.-E., The Hardy inequality: About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR
[5] Lorente M., “A characterization of two weight norm inequalities for one-sided operators of fractional type”, Can. J. Math., 49:5 (1997), 1010–1033 | DOI | MR
[6] V. G. Maz'ya and S. V. Poborchi, “Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains”, St. Petersburg Math. J., 18:4 (2007), 583–605 | DOI | MR
[7] Meskhi A., “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR
[8] Prokhorov D.V., “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 61:2 (2000), 617–628 | DOI | MR
[9] D. V. Prokhorov and V. D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR
[10] N. A. Rautian, “On the boundedness of a class of fractional type integral operators”, Sb. Math., 200:12 (2009), 1807–1832 | DOI | MR
[11] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Am. Math. Soc., Providence, RI, 1991 | MR | MR
[12] V. D. Stepanov, “Two-weighted estimates of Riemann–Liouville integrals”, Math. USSR, Izv., 36:3 (1991), 669–681 | DOI | MR