Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 298-323

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S\subset \mathbb R^n$ be a nonempty set. Given $d\in [0,n)$ and a cube $\overline {Q}\subset \mathbb R^n$ with side length $l=l(\overline {Q}) \in (0,1]$, we show that if the $d$-Hausdorff content $\mathcal H^d_{\infty }(\overline {Q}\cap S)$ of the set $\overline {Q}\cap S$ satisfies the inequality $\mathcal H^d_{\infty }(\overline {Q}\cap S)\overline {\lambda }l^{d}$ for some $\overline {\lambda }\in (0,1)$, then the set $\overline {Q}\setminus S$ contains a specific cavity. More precisely, we prove the existence of a pseudometric $\rho =\rho _{S,d}$ such that for every sufficiently small $\delta >0$ the $\delta $-neighborhood $U^\rho _{\delta _{}}(S)$ of $S$ in the pseudometric $\rho $ does not cover $\overline {Q}$. Moreover, we establish the existence of constants $\overline {\delta }=\overline {\delta }(n,d,\overline {\lambda })>0$ and $\underline {\gamma }=\underline {\gamma }(n,d,\overline {\lambda })>0$ such that $\mathcal L^n(\overline {Q}\setminus U^{\rho }_{\delta l}(S)) \geq \underline {\gamma } l^n$ for all $\delta \in (0,\overline {\delta })$, where $\mathcal L^n$ is the Lebesgue measure. If in addition the set $S$ is lower content $d$-regular, we prove the existence of a constant $\underline {\tau }=\underline {\tau }(n,d,\overline {\lambda })>0$ such that the cube $\overline {Q}$ is $\underline {\tau }$-porous. The sharpness of the results is illustrated by several examples.
Keywords: porous sets, lower content $d$-regular sets.
Mots-clés : Hausdorff content
@article{TRSPY_2022_319_a18,
     author = {A. I. Tyulenev},
     title = {Some {Porosity-Type} {Properties} of {Sets} {Related} to the $d${-Hausdorff} {Content}},
     journal = {Informatics and Automation},
     pages = {298--323},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
JO  - Informatics and Automation
PY  - 2022
SP  - 298
EP  - 323
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/
LA  - ru
ID  - TRSPY_2022_319_a18
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
%J Informatics and Automation
%D 2022
%P 298-323
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/
%G ru
%F TRSPY_2022_319_a18
A. I. Tyulenev. Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 298-323. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/