Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 298-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S\subset \mathbb R^n$ be a nonempty set. Given $d\in [0,n)$ and a cube $\overline {Q}\subset \mathbb R^n$ with side length $l=l(\overline {Q}) \in (0,1]$, we show that if the $d$-Hausdorff content $\mathcal H^d_{\infty }(\overline {Q}\cap S)$ of the set $\overline {Q}\cap S$ satisfies the inequality $\mathcal H^d_{\infty }(\overline {Q}\cap S)\overline {\lambda }l^{d}$ for some $\overline {\lambda }\in (0,1)$, then the set $\overline {Q}\setminus S$ contains a specific cavity. More precisely, we prove the existence of a pseudometric $\rho =\rho _{S,d}$ such that for every sufficiently small $\delta >0$ the $\delta $-neighborhood $U^\rho _{\delta _{}}(S)$ of $S$ in the pseudometric $\rho $ does not cover $\overline {Q}$. Moreover, we establish the existence of constants $\overline {\delta }=\overline {\delta }(n,d,\overline {\lambda })>0$ and $\underline {\gamma }=\underline {\gamma }(n,d,\overline {\lambda })>0$ such that $\mathcal L^n(\overline {Q}\setminus U^{\rho }_{\delta l}(S)) \geq \underline {\gamma } l^n$ for all $\delta \in (0,\overline {\delta })$, where $\mathcal L^n$ is the Lebesgue measure. If in addition the set $S$ is lower content $d$-regular, we prove the existence of a constant $\underline {\tau }=\underline {\tau }(n,d,\overline {\lambda })>0$ such that the cube $\overline {Q}$ is $\underline {\tau }$-porous. The sharpness of the results is illustrated by several examples.
Keywords: porous sets, lower content $d$-regular sets.
Mots-clés : Hausdorff content
@article{TRSPY_2022_319_a18,
     author = {A. I. Tyulenev},
     title = {Some {Porosity-Type} {Properties} of {Sets} {Related} to the $d${-Hausdorff} {Content}},
     journal = {Informatics and Automation},
     pages = {298--323},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
JO  - Informatics and Automation
PY  - 2022
SP  - 298
EP  - 323
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/
LA  - ru
ID  - TRSPY_2022_319_a18
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
%J Informatics and Automation
%D 2022
%P 298-323
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/
%G ru
%F TRSPY_2022_319_a18
A. I. Tyulenev. Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 298-323. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a18/

[1] Azzam J., Schul R., “An analyst's traveling salesman theorem for sets of dimension larger than one”, Math. Ann., 370:3–4 (2018), 1389–1476 | DOI | MR

[2] Azzam J., Villa M., “Quantitative comparisons of multiscale geometric properties”, Anal. PDE, 14:6 (2021), 1873–1904 | DOI | MR

[3] Denjoy A., “Sur une propriété de séries trigonométriques”, Amst. Ak. Versl., 29 (1920), 628–639

[4] E. P. Dolženko, “Boundary properties of arbitrary functions”, Math. USSR, Izv., 1:1 (1967), 1–12 | DOI | MR

[5] Ihnatsyeva L., Vähäkangas A.V., “Characterization of traces of smooth functions on Ahlfors regular sets”, J. Funct. Anal., 265:9 (2013), 1870–1915 | DOI | MR

[6] Jonsson A., “Atomic decomposition of Besov spaces on closed sets”, Function spaces, differential operators and nonlinear analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 285–289 | DOI | MR

[7] Koskela P., Rohde S., “Hausdorff dimension and mean porosity”, Math. Ann., 309:4 (1997), 593–609 | DOI | MR

[8] Luukkainen J., “Assouad dimension: Antifractal metrization, porous sets, and homogeneous measures”, J. Korean Math. Soc., 35:1 (1998), 23–76 | MR

[9] Mattila P., Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1999 | MR

[10] Yu. V. Netrusov, “Spectral synthesis in the Sobolev space generated by an integral metric”, J. Math. Sci., 85:2 (1997), 1814–1826 | DOI | MR

[11] Nieminen T., “Generalized mean porosity and dimension”, Ann. Acad. sci. Fenn. Math., 31:1 (2006), 143–172 | MR

[12] Rychkov V.S., “Linear extension operators for restrictions of function spaces to irregular open sets”, Stud. math., 140:2 (2000), 141–162 | DOI | MR

[13] Salli A., “On the Minkowski dimension of strongly porous fractal sets in $\mathbb R^n$”, Proc. London Math. Soc., 62:2 (1991), 353–372 | DOI | MR

[14] Shmerkin P., “Porosity, dimension, and local entropies: A survey”, Rev. Unión Mat. Argent., 52:2 (2011), 81–103 | MR

[15] Shvartsman P., “Sobolev $W^1_p$-spaces on closed subsets of $\mathbf R^n$”, Adv. Math., 220:6 (2009), 1842–1922 | DOI | MR

[16] Triebel H., The structure of functions, Monogr. Math., 97, Birkhäuser, Basel, 2001 | MR

[17] A. I. Tyulenev, “Almost sharp descriptions of traces of Sobolev spaces on compacta”, Math. Notes, 110:5–6 (2021), 976–980 | DOI | MR

[18] Tyulenev A.I., Almost sharp descriptions of traces of Sobolev $W^1_p(\mathbb R^n)$-spaces to arbitrary compact subsets of $\mathbb R^n$. The case $p\in (1,n]$, E-print, 2021, arXiv: 2109.07553 [math.FA] | MR

[19] Tyulenev A.I., “Restrictions of Sobolev $W_p^1(\mathbb R^2)$-spaces to planar rectifiable curves”, Ann. Fenn. math., 47:1 (2022), 507–531 | DOI | MR

[20] A. I. Tyulenev and S. K. Vodop'yanov, “On the Whitney problem for weighted Sobolev spaces”, Dokl. Math., 95:1 (2017), 79–83 | DOI | MR

[21] Väisälä J., “Porous sets and quasisymmetric maps”, Trans. Amer. Math. Soc., 299 (1987), 525–533 | DOI | MR

[22] S. K. Vodop'yanov and A. I. Tyulenev, “Sobolev $W_p^1$-spaces on $d$-thick closed subsets of $\mathbb R^n$”, Sb. Math., 211:6 (2020), 786–837 | DOI | MR