An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m(G)$ be the infimum of the volumes of all open subgroups of a unimodular locally compact group $G$. Suppose integrable functions $\phi _1,\phi _2: G\to [0,1]$ satisfy $\|\phi _1\|\leq \|\phi _2\|$ and $\|\phi _1\| + \|\phi _2\| \leq m(G)$, where $\|\cdot \|$ denotes the $L^1$-norm with respect to a Haar measure $dg$ on $G$. We have the following inequality for any convex function $f: [0,\|\phi _1\|]\to \mathbb R $ with $f(0) = 0$: $\int _{G} f \circ (\phi _1 * \phi _2)(g)\,dg \leq 2 \int _{0}^{\|\phi _1\|} f(y)\,dy + (\|\phi _2\| - \|\phi _1\|) f(\|\phi _1\|)$. As a corollary, we have a slightly stronger version of the Brunn–Minkowski–Kemperman inequality. That is, we have $\mathrm {vol}_*(B_1 B_2) \geq \mathrm {vol}(\{g\in G \mid 1_{B_1} * 1_{B_2}(g) > 0\}) \geq \mathrm {vol}(B_1) + \mathrm {vol}(B_2)$ for any non-null measurable sets $B_1,B_2 \subset G$ with $\mathrm {vol}(B_1) + \mathrm {vol}(B_2) \leq m(G)$, where $\mathrm {vol}_*$ denotes the inner measure and $1_B$ the characteristic function of $B$.
Mots-clés : convolution
Keywords: convexity, locally compact group, combinatorial inequality, geometric measure theory.
@article{TRSPY_2022_319_a17,
     author = {Takashi Satomi},
     title = {An {Inequality} for the {Compositions} of {Convex} {Functions} with {Convolutions} and an {Alternative} {Proof} of the {Brunn--Minkowski--Kemperman} {Inequality}},
     journal = {Informatics and Automation},
     pages = {280--297},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/}
}
TY  - JOUR
AU  - Takashi Satomi
TI  - An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
JO  - Informatics and Automation
PY  - 2022
SP  - 280
EP  - 297
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
LA  - ru
ID  - TRSPY_2022_319_a17
ER  - 
%0 Journal Article
%A Takashi Satomi
%T An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
%J Informatics and Automation
%D 2022
%P 280-297
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
%G ru
%F TRSPY_2022_319_a17
Takashi Satomi. An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/