An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $m(G)$ be the infimum of the volumes of all open subgroups of a unimodular locally compact group $G$. Suppose integrable functions $\phi _1,\phi _2: G\to [0,1]$ satisfy $\|\phi _1\|\leq \|\phi _2\|$ and $\|\phi _1\| + \|\phi _2\| \leq m(G)$, where $\|\cdot \|$ denotes the $L^1$-norm with respect to a Haar measure $dg$ on $G$. We have the following inequality for any convex function $f: [0,\|\phi _1\|]\to \mathbb R $ with $f(0) = 0$: $\int _{G} f \circ (\phi _1 * \phi _2)(g)\,dg \leq 2 \int _{0}^{\|\phi _1\|} f(y)\,dy + (\|\phi _2\| - \|\phi _1\|) f(\|\phi _1\|)$. As a corollary, we have a slightly stronger version of the Brunn–Minkowski–Kemperman inequality. That is, we have $\mathrm {vol}_*(B_1 B_2) \geq \mathrm {vol}(\{g\in G \mid 1_{B_1} * 1_{B_2}(g) > 0\}) \geq \mathrm {vol}(B_1) + \mathrm {vol}(B_2)$ for any non-null measurable sets $B_1,B_2 \subset G$ with $\mathrm {vol}(B_1) + \mathrm {vol}(B_2) \leq m(G)$, where $\mathrm {vol}_*$ denotes the inner measure and $1_B$ the characteristic function of $B$.
Mots-clés : convolution
Keywords: convexity, locally compact group, combinatorial inequality, geometric measure theory.
@article{TRSPY_2022_319_a17,
     author = {Takashi Satomi},
     title = {An {Inequality} for the {Compositions} of {Convex} {Functions} with {Convolutions} and an {Alternative} {Proof} of the {Brunn{\textendash}Minkowski{\textendash}Kemperman} {Inequality}},
     journal = {Informatics and Automation},
     pages = {280--297},
     year = {2022},
     volume = {319},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/}
}
TY  - JOUR
AU  - Takashi Satomi
TI  - An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality
JO  - Informatics and Automation
PY  - 2022
SP  - 280
EP  - 297
VL  - 319
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
LA  - ru
ID  - TRSPY_2022_319_a17
ER  - 
%0 Journal Article
%A Takashi Satomi
%T An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality
%J Informatics and Automation
%D 2022
%P 280-297
%V 319
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
%G ru
%F TRSPY_2022_319_a17
Takashi Satomi. An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/

[1] Brascamp H.J., Lieb E.H., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR

[2] Brunn H., Über Ovale und Eiflächen, Inag. Diss., Akad. Buchdruckerei von R. Straub, München, 1887

[3] Christ M., “Near equality in the Riesz–Sobolev inequality”, Acta math. Sin. Engl. Ser., 35:6 (2019), 783–814 | DOI | MR

[4] Christ M., Iliopoulou M., “Inequalities of Riesz–Sobolev type for compact connected Abelian groups”, Amer. J. Math., 144:5 (2022), 1367–1435 | DOI | MR

[5] Green B., Ruzsa I.Z., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI | MR

[6] Griesmer J.T., “Semicontinuity of structure for small sumsets in compact abelian groups”, Discrete Anal., 2019 (2019), 18 | MR

[7] Henstock R., Macbeath A.M., “On the measure of sum-sets. I: The theorems of Brunn, Minkowski, and Lusternik”, Proc. London Math. Soc. Ser. 3, 3 (1953), 182–194 | DOI | MR

[8] Hewitt E., Ross K.A., Abstract harmonic analysis, v. 1, Grundl. Math. Wiss., 115, Structure of topological groups, integration theory, group representations, 2nd ed., Springer, Berlin, 1979 | MR

[9] Jing Y., Tran C.-M., Minimal and nearly minimal measure expansions in connected unimodular groups, E-print, 2020, arXiv: 2006.01824 [math.CO]

[10] Jing Y., Tran C.-M., Zhang R., A nonabelian Brunn–Minkowski inequality, E-print, 2021, arXiv: 2101.07782 [math.GR]

[11] Kemperman J.H.B., “On products of sets in a locally compact group”, Fundam. math., 56 (1964), 51–68 | DOI | MR

[12] Kneser M., “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z., 66 (1956), 88–110 | DOI | MR

[13] Lusternik L., “Die Brunn–Minkowskische ungleichung für beliebige messbare Mengen”, C. r. Acad. sci. URSS, 3:2 (1935), 55–58

[14] Macbeath A.M., “On measure of sum sets. II: The sum-theorem for the torus”, Proc. Cambridge Philos. Soc., 49 (1953), 40–43 | DOI | MR

[15] McCrudden M., “On the Brunn–Minkowski coefficient of a locally compact unimodular group”, Proc. Cambridge Philos. Soc., 65 (1969), 33–45 | DOI | MR

[16] Minkowski H., Geometrie der Zahlen, B. G. Teubner, Leipzig, 1896 | MR

[17] Pollard J.M., “A generalisation of the theorem of Cauchy and Davenport”, J. London Math. Soc. Ser. 2, 8 (1974), 460–462 | DOI | MR

[18] Raikov D.A., “O slozhenii mnozhestv v smysle Shnirelmana”, Mat. sb., 5:2 (1939), 425–440

[19] Riesz F., “Sur une inégalité intégrale”, J. London Math. Soc., 5:3 (1930), 162–168 | DOI | MR

[20] Ruzsa I.Z., “A concavity property for the measure of product sets in groups”, Fundam. math., 140:3 (1992), 247–254 | DOI | MR

[21] Shields A., “Sur la mesure d'une somme vectorielle”, Fundam. math., 42 (1955), 57–60 | DOI | MR

[22] S. L. Sobolev, “On a theorem of functional analysis”, Am. Math. Soc., Transl., Ser. 2,, 34 (1963), 39–68

[23] Tao T., Spending symmetry, Preprint, UCLA, Los Angeles, CA, 2012 https://terrytao.files.wordpress.com/2012/11/blog-book.pdf

[24] Tao T., “Noncommutative sets of small doubling”, Eur. J. Comb., 34:8 (2013), 1459–1465 | DOI | MR

[25] T. Tao, “An inverse theorem for an inequality of Kneser”, Proc. Steklov Inst. Math., 303 (2018), 193–219 | DOI | MR

[26] Van Dantzig D., Studien over topologische algebra, H. J. Paris, Amsterdam, 1931

[27] Weil A., L'intégration dans les groupes topologiques et ses applications, Actual. sci. ind., 869, Hermann, Paris, 1940 | MR