An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m(G)$ be the infimum of the volumes of all open subgroups of a unimodular locally compact group $G$. Suppose integrable functions $\phi _1,\phi _2: G\to [0,1]$ satisfy $\|\phi _1\|\leq \|\phi _2\|$ and $\|\phi _1\| + \|\phi _2\| \leq m(G)$, where $\|\cdot \|$ denotes the $L^1$-norm with respect to a Haar measure $dg$ on $G$. We have the following inequality for any convex function $f: [0,\|\phi _1\|]\to \mathbb R $ with $f(0) = 0$: $\int _{G} f \circ (\phi _1 * \phi _2)(g)\,dg \leq 2 \int _{0}^{\|\phi _1\|} f(y)\,dy + (\|\phi _2\| - \|\phi _1\|) f(\|\phi _1\|)$. As a corollary, we have a slightly stronger version of the Brunn–Minkowski–Kemperman inequality. That is, we have $\mathrm {vol}_*(B_1 B_2) \geq \mathrm {vol}(\{g\in G \mid 1_{B_1} * 1_{B_2}(g) > 0\}) \geq \mathrm {vol}(B_1) + \mathrm {vol}(B_2)$ for any non-null measurable sets $B_1,B_2 \subset G$ with $\mathrm {vol}(B_1) + \mathrm {vol}(B_2) \leq m(G)$, where $\mathrm {vol}_*$ denotes the inner measure and $1_B$ the characteristic function of $B$.
Mots-clés : convolution
Keywords: convexity, locally compact group, combinatorial inequality, geometric measure theory.
@article{TRSPY_2022_319_a17,
     author = {Takashi Satomi},
     title = {An {Inequality} for the {Compositions} of {Convex} {Functions} with {Convolutions} and an {Alternative} {Proof} of the {Brunn--Minkowski--Kemperman} {Inequality}},
     journal = {Informatics and Automation},
     pages = {280--297},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/}
}
TY  - JOUR
AU  - Takashi Satomi
TI  - An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
JO  - Informatics and Automation
PY  - 2022
SP  - 280
EP  - 297
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
LA  - ru
ID  - TRSPY_2022_319_a17
ER  - 
%0 Journal Article
%A Takashi Satomi
%T An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
%J Informatics and Automation
%D 2022
%P 280-297
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/
%G ru
%F TRSPY_2022_319_a17
Takashi Satomi. An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 280-297. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a17/

[1] Brascamp H.J., Lieb E.H., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR

[2] Brunn H., Über Ovale und Eiflächen, Inag. Diss., Akad. Buchdruckerei von R. Straub, München, 1887

[3] Christ M., “Near equality in the Riesz–Sobolev inequality”, Acta math. Sin. Engl. Ser., 35:6 (2019), 783–814 | DOI | MR

[4] Christ M., Iliopoulou M., “Inequalities of Riesz–Sobolev type for compact connected Abelian groups”, Amer. J. Math., 144:5 (2022), 1367–1435 | DOI | MR

[5] Green B., Ruzsa I.Z., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI | MR

[6] Griesmer J.T., “Semicontinuity of structure for small sumsets in compact abelian groups”, Discrete Anal., 2019 (2019), 18 | MR

[7] Henstock R., Macbeath A.M., “On the measure of sum-sets. I: The theorems of Brunn, Minkowski, and Lusternik”, Proc. London Math. Soc. Ser. 3, 3 (1953), 182–194 | DOI | MR

[8] Hewitt E., Ross K.A., Abstract harmonic analysis, v. 1, Grundl. Math. Wiss., 115, Structure of topological groups, integration theory, group representations, 2nd ed., Springer, Berlin, 1979 | MR

[9] Jing Y., Tran C.-M., Minimal and nearly minimal measure expansions in connected unimodular groups, E-print, 2020, arXiv: 2006.01824 [math.CO]

[10] Jing Y., Tran C.-M., Zhang R., A nonabelian Brunn–Minkowski inequality, E-print, 2021, arXiv: 2101.07782 [math.GR]

[11] Kemperman J.H.B., “On products of sets in a locally compact group”, Fundam. math., 56 (1964), 51–68 | DOI | MR

[12] Kneser M., “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z., 66 (1956), 88–110 | DOI | MR

[13] Lusternik L., “Die Brunn–Minkowskische ungleichung für beliebige messbare Mengen”, C. r. Acad. sci. URSS, 3:2 (1935), 55–58

[14] Macbeath A.M., “On measure of sum sets. II: The sum-theorem for the torus”, Proc. Cambridge Philos. Soc., 49 (1953), 40–43 | DOI | MR

[15] McCrudden M., “On the Brunn–Minkowski coefficient of a locally compact unimodular group”, Proc. Cambridge Philos. Soc., 65 (1969), 33–45 | DOI | MR

[16] Minkowski H., Geometrie der Zahlen, B. G. Teubner, Leipzig, 1896 | MR

[17] Pollard J.M., “A generalisation of the theorem of Cauchy and Davenport”, J. London Math. Soc. Ser. 2, 8 (1974), 460–462 | DOI | MR

[18] Raikov D.A., “O slozhenii mnozhestv v smysle Shnirelmana”, Mat. sb., 5:2 (1939), 425–440

[19] Riesz F., “Sur une inégalité intégrale”, J. London Math. Soc., 5:3 (1930), 162–168 | DOI | MR

[20] Ruzsa I.Z., “A concavity property for the measure of product sets in groups”, Fundam. math., 140:3 (1992), 247–254 | DOI | MR

[21] Shields A., “Sur la mesure d'une somme vectorielle”, Fundam. math., 42 (1955), 57–60 | DOI | MR

[22] S. L. Sobolev, “On a theorem of functional analysis”, Am. Math. Soc., Transl., Ser. 2,, 34 (1963), 39–68

[23] Tao T., Spending symmetry, Preprint, UCLA, Los Angeles, CA, 2012 https://terrytao.files.wordpress.com/2012/11/blog-book.pdf

[24] Tao T., “Noncommutative sets of small doubling”, Eur. J. Comb., 34:8 (2013), 1459–1465 | DOI | MR

[25] T. Tao, “An inverse theorem for an inequality of Kneser”, Proc. Steklov Inst. Math., 303 (2018), 193–219 | DOI | MR

[26] Van Dantzig D., Studien over topologische algebra, H. J. Paris, Amsterdam, 1931

[27] Weil A., L'intégration dans les groupes topologiques et ses applications, Actual. sci. ind., 869, Hermann, Paris, 1940 | MR