Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 251-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze the Markov–Bernstein type inequalities between the norms of functions and of their derivatives for complex exponential polynomials. We establish a relation between the sharp constants in these inequalities and the stability problem for linear switching systems. In particular, the maximal discretization step is estimated. We prove the monotonicity of the sharp constants with respect to the exponents, provided those exponents are real. This gives asymptotically tight uniform bounds and the general form of the extremal polynomial. The case of complex exponent is left as an open problem.
Keywords: exponential polynomial, Bernstein inequality, inequality between derivative, Chebyshev system, stability, Lyapunov exponent, Lyapunov functions, dynamical switching system.
Mots-clés : quasipolynomial
@article{TRSPY_2022_319_a15,
     author = {Vladimir Yu. Protasov},
     title = {Generalized {Markov--Bernstein} {Inequalities} and {Stability} of {Dynamical} {Systems}},
     journal = {Informatics and Automation},
     pages = {251--267},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/}
}
TY  - JOUR
AU  - Vladimir Yu. Protasov
TI  - Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems
JO  - Informatics and Automation
PY  - 2022
SP  - 251
EP  - 267
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/
LA  - ru
ID  - TRSPY_2022_319_a15
ER  - 
%0 Journal Article
%A Vladimir Yu. Protasov
%T Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems
%J Informatics and Automation
%D 2022
%P 251-267
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/
%G ru
%F TRSPY_2022_319_a15
Vladimir Yu. Protasov. Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 251-267. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/

[1] N. E. Barabanov, “Absolute characteristic exponent of a class of linear nonstationary systems of differential equations”, Sib. Math. J., 29:4 (1988), 521–530 | DOI | MR

[2] Blanchini F., Casagrande D., Miani S., “Modal and transition dwell time computation in switching systems: A set-theoretic approach”, Automatica, 46:9 (2010), 1477–1482 | DOI | MR

[3] Blanchini F., Miani S., “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques: Based on IEEE Workshop (Benevento, 1994), Lect. Notes Control Inf. Sci., 217, Springer, Berlin, 1996, 213–243 | MR

[4] Blanchini F., Miani S., “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Autom. Control, 44:3 (1999), 641–647 | DOI | MR

[5] Blondel V.D., Gaubert S., Tsitsiklis J.N., “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Autom. Control, 45:9 (2000), 1762–1765 | DOI | MR

[6] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Springer, New York, 1995 | MR

[7] Borwein P., Erdélyi T., “Upper bounds for the derivative of exponential sums”, Proc. Amer. Math. Soc., 123:5 (1995), 1481–1486 | DOI | MR

[8] Borwein P., Erdélyi T., “A sharp Bernstein-type inequality for exponential sums”, J. reine angew. Math., 476 (1996), 127–141 | MR

[9] Borwein P., Erdélyi T., “Newman's inequality for Müntz polynomials on positive intervals”, J. Approx. Theory, 85:2 (1996), 132–139 | DOI | MR

[10] Briat C., Seuret A., “Affine characterizations of minimal and mode-dependent dwell-times for uncertain linear switched systems”, IEEE Trans. Autom. Control, 58:5 (2013), 1304–1310 | DOI | MR

[11] Carley H., Li X., Mohapatra R.N., “A sharp inequality of Markov type for polynomials associated with Laguerre weight”, J. Approx. Theory, 113:2 (2001), 221–228 | DOI | MR

[12] Dzyadyk V.K., Shevchuk I.A., Theory of uniform approximation of functions by polynomials, de Gruyter, Berlin, 2008 | MR

[13] Freud G., “On two polynomial inequalities. I”, Acta math. Acad. sci. Hung., 22:1–2 (1971), 109–116 | DOI | MR

[14] Gripenberg G., “Computing the joint spectral radius”, Linear Algebra Appl., 234 (1996), 43–60 | DOI | MR

[15] Guglielmi N., Laglia L., Protasov V., “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR

[16] Guglielmi N., Protasov V., “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 | DOI | MR

[17] Karlin S., “Representation theorems for positive functions”, J. Math. Mech., 12:4 (1963), 599–617 | MR

[18] Karlin S., Studden W.J., Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience, New York, 1966 | MR

[19] M. G. Kreĭn and A. A. Nudel'man, The Markov Moment Problem and Extremal Problems, Transl. Math. Monogr., 50, Am. Math. Soc., Providence, RI, 1977 | MR | MR

[20] Liberzon D., Switching in systems and control, Syst. Control Found. Appl., Birkhäuser, Boston, 2003 | DOI | MR

[21] Liberzon D., Morse A.S., “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70 | DOI

[22] Mejstrik T., “Algorithm 1011: Improved invariant polytope algorithm and applications”, ACM Trans. Math. Softw., 46:3 (2020), 29 | DOI | MR

[23] Milev L., Naidenov N., “Exact Markov inequalities for the Hermite and Laguerre weights”, J. Approx. Theory, 138:1 (2006), 87–96 | DOI | MR

[24] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. I”, Autom. Remote Control, 47:3 (1986), 344–354 | MR

[25] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. II”, Autom. Remote Control, 47:4 (1986), 443–451 | MR

[26] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. III”, Autom. Remote Control, 47:5 (1986), 620–630 | MR

[27] Molchanov A.P., Pyatnitskiy E.S., “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Syst. Control Lett., 13:1 (1989), 59–64 | DOI | MR

[28] Möller C., Reif U., “A tree-based approach to joint spectral radius determination”, Linear Algebra Appl., 463 (2014), 154–170 | DOI | MR

[29] Newman D.J., “Derivative bounds for Müntz polynomials”, J. Approx. Theory, 18 (1976), 360–362 | DOI | MR

[30] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977 | MR

[31] Protasov V.Yu., Jungers R.M., “Is switching systems stability harder for continuous time systems?”, 52nd IEEE Conf. on Decision and Control, 2013, IEEE, 2013, 704–709 | DOI

[32] Protasov V.Yu., Jungers R.M., “Analysing the stability of linear systems via exponential Chebyshev polynomials”, IEEE Trans. Autom. Control, 61:3 (2016), 795–798 | DOI | MR

[33] Protasov V.Yu., Jungers R.M., Blondel V.D., “Joint spectral characteristics of matrices: A conic programming approach”, SIAM J. Matrix Anal. Appl., 31:4 (2010), 2146–2162 | DOI | MR

[34] Remes E., “Sur le calcul effectif des polynomes d'approximation de Tchebichef”, C. r. Acad. sci., 199 (1934), 337–340

[35] V. P. Sklyarov, “The sharp constant in Markov's inequality for the Laguerre weight”, Sb. Math., 200:6 (2009), 887–897 | DOI | MR

[36] Szegö G., “On some problems of approximations”, Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 9 (1964), 3–9 | MR