Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_319_a15, author = {Vladimir Yu. Protasov}, title = {Generalized {Markov--Bernstein} {Inequalities} and {Stability} of {Dynamical} {Systems}}, journal = {Informatics and Automation}, pages = {251--267}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/} }
Vladimir Yu. Protasov. Generalized Markov--Bernstein Inequalities and Stability of Dynamical Systems. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 251-267. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a15/
[1] N. E. Barabanov, “Absolute characteristic exponent of a class of linear nonstationary systems of differential equations”, Sib. Math. J., 29:4 (1988), 521–530 | DOI | MR
[2] Blanchini F., Casagrande D., Miani S., “Modal and transition dwell time computation in switching systems: A set-theoretic approach”, Automatica, 46:9 (2010), 1477–1482 | DOI | MR
[3] Blanchini F., Miani S., “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques: Based on IEEE Workshop (Benevento, 1994), Lect. Notes Control Inf. Sci., 217, Springer, Berlin, 1996, 213–243 | MR
[4] Blanchini F., Miani S., “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Autom. Control, 44:3 (1999), 641–647 | DOI | MR
[5] Blondel V.D., Gaubert S., Tsitsiklis J.N., “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Autom. Control, 45:9 (2000), 1762–1765 | DOI | MR
[6] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Springer, New York, 1995 | MR
[7] Borwein P., Erdélyi T., “Upper bounds for the derivative of exponential sums”, Proc. Amer. Math. Soc., 123:5 (1995), 1481–1486 | DOI | MR
[8] Borwein P., Erdélyi T., “A sharp Bernstein-type inequality for exponential sums”, J. reine angew. Math., 476 (1996), 127–141 | MR
[9] Borwein P., Erdélyi T., “Newman's inequality for Müntz polynomials on positive intervals”, J. Approx. Theory, 85:2 (1996), 132–139 | DOI | MR
[10] Briat C., Seuret A., “Affine characterizations of minimal and mode-dependent dwell-times for uncertain linear switched systems”, IEEE Trans. Autom. Control, 58:5 (2013), 1304–1310 | DOI | MR
[11] Carley H., Li X., Mohapatra R.N., “A sharp inequality of Markov type for polynomials associated with Laguerre weight”, J. Approx. Theory, 113:2 (2001), 221–228 | DOI | MR
[12] Dzyadyk V.K., Shevchuk I.A., Theory of uniform approximation of functions by polynomials, de Gruyter, Berlin, 2008 | MR
[13] Freud G., “On two polynomial inequalities. I”, Acta math. Acad. sci. Hung., 22:1–2 (1971), 109–116 | DOI | MR
[14] Gripenberg G., “Computing the joint spectral radius”, Linear Algebra Appl., 234 (1996), 43–60 | DOI | MR
[15] Guglielmi N., Laglia L., Protasov V., “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR
[16] Guglielmi N., Protasov V., “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 | DOI | MR
[17] Karlin S., “Representation theorems for positive functions”, J. Math. Mech., 12:4 (1963), 599–617 | MR
[18] Karlin S., Studden W.J., Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience, New York, 1966 | MR
[19] M. G. Kreĭn and A. A. Nudel'man, The Markov Moment Problem and Extremal Problems, Transl. Math. Monogr., 50, Am. Math. Soc., Providence, RI, 1977 | MR | MR
[20] Liberzon D., Switching in systems and control, Syst. Control Found. Appl., Birkhäuser, Boston, 2003 | DOI | MR
[21] Liberzon D., Morse A.S., “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70 | DOI
[22] Mejstrik T., “Algorithm 1011: Improved invariant polytope algorithm and applications”, ACM Trans. Math. Softw., 46:3 (2020), 29 | DOI | MR
[23] Milev L., Naidenov N., “Exact Markov inequalities for the Hermite and Laguerre weights”, J. Approx. Theory, 138:1 (2006), 87–96 | DOI | MR
[24] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. I”, Autom. Remote Control, 47:3 (1986), 344–354 | MR
[25] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. II”, Autom. Remote Control, 47:4 (1986), 443–451 | MR
[26] A. P. Molchanov and E. S. Pyatnitskii, “Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems. III”, Autom. Remote Control, 47:5 (1986), 620–630 | MR
[27] Molchanov A.P., Pyatnitskiy E.S., “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Syst. Control Lett., 13:1 (1989), 59–64 | DOI | MR
[28] Möller C., Reif U., “A tree-based approach to joint spectral radius determination”, Linear Algebra Appl., 463 (2014), 154–170 | DOI | MR
[29] Newman D.J., “Derivative bounds for Müntz polynomials”, J. Approx. Theory, 18 (1976), 360–362 | DOI | MR
[30] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977 | MR
[31] Protasov V.Yu., Jungers R.M., “Is switching systems stability harder for continuous time systems?”, 52nd IEEE Conf. on Decision and Control, 2013, IEEE, 2013, 704–709 | DOI
[32] Protasov V.Yu., Jungers R.M., “Analysing the stability of linear systems via exponential Chebyshev polynomials”, IEEE Trans. Autom. Control, 61:3 (2016), 795–798 | DOI | MR
[33] Protasov V.Yu., Jungers R.M., Blondel V.D., “Joint spectral characteristics of matrices: A conic programming approach”, SIAM J. Matrix Anal. Appl., 31:4 (2010), 2146–2162 | DOI | MR
[34] Remes E., “Sur le calcul effectif des polynomes d'approximation de Tchebichef”, C. r. Acad. sci., 199 (1934), 337–340
[35] V. P. Sklyarov, “The sharp constant in Markov's inequality for the Laguerre weight”, Sb. Math., 200:6 (2009), 887–897 | DOI | MR
[36] Szegö G., “On some problems of approximations”, Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 9 (1964), 3–9 | MR