Luzin's Problem on Fourier Convergence and Homeomorphisms
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 134-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for every continuous function $f$ there exists an absolutely continuous circle homeomorphism $\phi $ such that the Fourier series of $f\circ \phi $ converges uniformly. This resolves a problem posed by N. N. Luzin.
@article{TRSPY_2022_319_a10,
     author = {Gady Kozma and Alexander Olevskiǐ},
     title = {Luzin's {Problem} on {Fourier} {Convergence} and {Homeomorphisms}},
     journal = {Informatics and Automation},
     pages = {134--181},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a10/}
}
TY  - JOUR
AU  - Gady Kozma
AU  - Alexander Olevskiǐ
TI  - Luzin's Problem on Fourier Convergence and Homeomorphisms
JO  - Informatics and Automation
PY  - 2022
SP  - 134
EP  - 181
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a10/
LA  - ru
ID  - TRSPY_2022_319_a10
ER  - 
%0 Journal Article
%A Gady Kozma
%A Alexander Olevskiǐ
%T Luzin's Problem on Fourier Convergence and Homeomorphisms
%J Informatics and Automation
%D 2022
%P 134-181
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a10/
%G ru
%F TRSPY_2022_319_a10
Gady Kozma; Alexander Olevskiǐ. Luzin's Problem on Fourier Convergence and Homeomorphisms. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 134-181. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a10/

[1] Balister P., Bollobás B., Morris R., Sahasrabudhe J., Tiba M., “Flat Littlewood polynomials exist”, Ann. Math. Ser. 2, 192:3 (2020), 977–1004 | MR

[2] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR

[3] Bohr H., “Über einen Satz von J. Pál”, Acta litt. sci. Szeged. Sect. sci. math., 7:3 (1935), 129–135

[4] Dubins L.E., Freedman D.A., “Random distribution functions”, Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, Part 1, v. II, Contributions to probability theory, Univ. California Press, Berkeley, 1967, 183–214 | MR

[5] Durrett R., Probability: Theory and examples, Cambridge Ser. Stat. Probab. Math., 49, 5th ed., Cambridge Univ. Press, Cambridge, 2019 | MR

[6] Garnett J.B., Marshall D.E., Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005 | MR

[7] Graf S., Mauldin R.D., Williams S.C., “Random homeomorphisms”, Adv. Math., 60:3 (1986), 239–359 | DOI | MR

[8] Kahane J.-P., Katznelson Y., “Séries de Fourier des fonctions bornées”, Studies in pure mathematics: To the memory of Paul Turán, Birkhäuser, Basel, 1983, 395–413 | DOI | MR

[9] Kashin B.S., “O nekotorykh svoistvakh prostranstva trigonometricheskikh mnogochlenov, svyazannykh s ravnomernoi skhodimostyu”, Soobsch. AN Gruz. SSR, 93:2 (1979), 281–284

[10] Kato T., Ponce G., “Commutator estimates and the Euler and Navier–Stokes equations”, Commun. Pure Appl. Math., 41:7 (1988), 891–907 | DOI | MR

[11] Kozma G., Olevskiĭ A., “Random homeomorphisms and Fourier expansions”, Geom. Funct. Anal., 8:6 (1998), 1016–1042 | DOI | MR

[12] A. M. Olevskiĭ, “Change of variable and absolute convergence of Fourier series”, Sov. Math., Dokl., 23 (1981), 76–79

[13] A. M. Olevskiĭ, “Modifications of functions and Fourier series”, Russ. Math. Surv., 40:3 (1985), 181–224 | DOI

[14] Pál J., “Sur les transformations des fonctions qui font converger leurs séries de Fourier”, C. r. Acad. sci. Paris, 158 (1914), 101–103

[15] A. A. Saakjan, “Integral moduli of smoothness and the Fourier coefficients of the composition of functions”, Math. USSR, Sb., 38:4 (1981), 549–561 | DOI | MR

[16] Slavin L., Vasyunin V., “Sharp results in the integral-form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR

[17] Spencer J., “Six standard deviations suffice”, Trans. Amer. Math. Soc., 289:2 (1985), 679–706 | DOI | MR