Homology and Cohomology of the Lamplighter Lie Algebra
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the lamplighter Lie algebra $\mathfrak l$ over the field of rational numbers, introduced by S. Ivanov, R. Mikhailov, and A. Zaikovskii, is isomorphic to the infinite-dimensional naturally graded Lie algebra of maximal class $\mathfrak m_0$. Y. Félix and A. Murillo proved that its $q$-dimensional homology $H_q(\mathfrak l,\mathbb Q)$ is infinite-dimensional. However, they failed to completely calculate the spaces $H_q(\mathfrak l,\mathbb Q)$, $q\ge 3$. In this paper, an infinite basis of the bigraded homology $H_{*,*}(\mathfrak l,\mathbb Q)$ is explicitly constructed using the results of D. Millionshchikov and A. Fialowski on the cohomology $H^*(\mathfrak l,\mathbb Q)$.
Keywords: homology, cohomology, lamplighter group, pronilpotent completion, $\mathfrak {sl}_2$-module.
Mots-clés : Lie algebra of maximal class
@article{TRSPY_2022_318_a9,
     author = {D. V. Millionshchikov},
     title = {Homology and {Cohomology} of the {Lamplighter} {Lie} {Algebra}},
     journal = {Informatics and Automation},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Homology and Cohomology of the Lamplighter Lie Algebra
JO  - Informatics and Automation
PY  - 2022
SP  - 166
EP  - 176
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/
LA  - ru
ID  - TRSPY_2022_318_a9
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Homology and Cohomology of the Lamplighter Lie Algebra
%J Informatics and Automation
%D 2022
%P 166-176
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/
%G ru
%F TRSPY_2022_318_a9
D. V. Millionshchikov. Homology and Cohomology of the Lamplighter Lie Algebra. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/