Homology and Cohomology of the Lamplighter Lie Algebra
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the lamplighter Lie algebra $\mathfrak l$ over the field of rational numbers, introduced by S. Ivanov, R. Mikhailov, and A. Zaikovskii, is isomorphic to the infinite-dimensional naturally graded Lie algebra of maximal class $\mathfrak m_0$. Y. Félix and A. Murillo proved that its $q$-dimensional homology $H_q(\mathfrak l,\mathbb Q)$ is infinite-dimensional. However, they failed to completely calculate the spaces $H_q(\mathfrak l,\mathbb Q)$, $q\ge 3$. In this paper, an infinite basis of the bigraded homology $H_{*,*}(\mathfrak l,\mathbb Q)$ is explicitly constructed using the results of D. Millionshchikov and A. Fialowski on the cohomology $H^*(\mathfrak l,\mathbb Q)$.
Keywords: homology, cohomology, lamplighter group, pronilpotent completion, $\mathfrak {sl}_2$-module.
Mots-clés : Lie algebra of maximal class
@article{TRSPY_2022_318_a9,
     author = {D. V. Millionshchikov},
     title = {Homology and {Cohomology} of the {Lamplighter} {Lie} {Algebra}},
     journal = {Informatics and Automation},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Homology and Cohomology of the Lamplighter Lie Algebra
JO  - Informatics and Automation
PY  - 2022
SP  - 166
EP  - 176
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/
LA  - ru
ID  - TRSPY_2022_318_a9
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Homology and Cohomology of the Lamplighter Lie Algebra
%J Informatics and Automation
%D 2022
%P 166-176
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/
%G ru
%F TRSPY_2022_318_a9
D. V. Millionshchikov. Homology and Cohomology of the Lamplighter Lie Algebra. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 166-176. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a9/

[1] Bourbaki N., Groupes et algèbres de Lie. Chapitres 2 et 3, Hermann, Paris, 1972 | MR

[2] Bousfield A.K., Kan D.M., Homotopy limits, completions and localizations, Lect. Notes Math., 304, Springer, Berlin, 1972 | DOI | MR | Zbl

[3] Dixmier J., “Cohomologie des algèbres de Lie nilpotentes”, Acta sci. math., 16 (1955), 246–250 | MR | Zbl

[4] G. L. Fel'dman, “Ends of Lie algebras”, Russ. Math. Surv., 38:1 (1983), 182–184 | DOI | MR | Zbl

[5] Y. Félix and A. Murillo, “The homology of the lamplighter Lie algebra”, Algebra Logic, 60:6 (2022), 425–432 | DOI | MR | Zbl

[6] Félix Y., Murillo A., “Homology of the completion of a Lie algebra”, Proc. Amer. Math. Soc., 150:1 (2022), 95–103 | DOI | MR | Zbl

[7] Fialowski A., Millionschikov D., “Cohomology of graded Lie algebras of maximal class”, J. Algebra, 296:1 (2006), 157–176 | DOI | MR | Zbl

[8] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, 1986 | MR | Zbl

[9] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funct. Anal. Appl., 7:2 (1973), 91–97 | DOI | MR | MR | Zbl

[10] Ivanov S.O., Mikhailov R., Zaikovskii A., “Homological properties of parafree Lie algebras”, J. Algebra, 560 (2020), 1092–1106 | DOI | MR | Zbl

[11] Limonchenko I., Millionshchikov D., “Higher order Massey products and applications”, Topology, geometry, and dynamics: V. A. Rokhlin–memorial, Contemp. Math., 772, Amer. Math. Soc., Providence, RI, 2021, 209–240 | DOI | MR | Zbl

[12] A. I. Malcev, “On a class of homogeneous spaces”, Am. Math. Soc. Transl., 1951, no. 39 | MR | Zbl

[13] Maltsev A.I., “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR. Ser. mat., 13:3 (1949), 201–212 | Zbl

[14] Mikhalev A.A., Umirbaev U.U., Zolotykh A.A., “A Lie algebra with cohomological dimension one over a field of prime characteristic is not necessarily free”, First international Tainan–Moscow algebra workshop (Proc. Int. Conf., Tainan, 1994), ed. by Y. Fong et al., de Gruyter, Berlin, 1996, 257–264 | MR | Zbl

[15] Millionschikov D., “Massey products in graded Lie algebra cohomology”, Contemporary geometry and related topics (Proc. Conf., Belgrade, 2005), ed. by N. Bokan et al., Univ. Belgrade, Belgrade, 2006, 353–377 | MR | Zbl

[16] D. V. Millionshchikov, “Naturally graded Lie algebras of slow growth”, Sb. Math., 210:6 (2019), 862–909 | DOI | MR | Zbl

[17] D. V. Millionshchikov and A. Fialowski, “Cohomology of certain $\mathbb N$-graded Lie algebras”, Russ. Math. Surv., 59:6 (2004), 1210–1211 | DOI | MR | Zbl

[18] Quillen D., “Rational homotopy theory”, Ann. Math. Ser. 2, 90:2 (1969), 205–295 | DOI | MR | Zbl

[19] Shalev A., Zelmanov E.I., “Narrow algebras and groups”, J. Math. Sci., 93:6 (1999), 951–963 | DOI | MR | Zbl

[20] Stallings J.R., “On torsion-free groups with infinitely many ends”, Ann. Math. Ser. 2, 88:2 (1968), 312–334 | DOI | MR | Zbl

[21] Swan R.G., “Groups of cohomological dimension one”, J. Algebra, 12:4 (1969), 585–610 | DOI | MR | Zbl

[22] Taback J., “Lamplighter groups”, Office hours with a geometric group theorist, ed. by M. Clay, D. Margalit, Princeton Univ. Press, Princeton, NJ, 2017, 310–330 | DOI | MR | Zbl

[23] Vergne M., “Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes”, Bull. Soc. math. France, 98 (1970), 81–116 | DOI | MR | Zbl

[24] A. A. Zolotykh, A. A. Mikhalev, and U. U. Umirbaev, “An example of a non-free Lie algebra of cohomological dimension 1”, Russ. Math. Surv., 49:1 (1994), 254 | DOI | MR | Zbl

[25] Zusmanovich P., “On Lie $p$-algebras of cohomological dimension one”, Indag. math., 30:2 (2019), 288–299 | DOI | MR | Zbl