The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known formula for the Euler characteristic of a complete intersection in the complex torus in terms of the supports of the Laurent polynomials, the left-hand sides of the defining equations (in fact, in terms of the convex hulls of these supports, Newton polyhedra), was announced in a short note by D. N. Bernshtein, A. G. Kushnirenko, and A. G. Khovanskii (1976). The proof of the formula was given by A. G. Khovanskii (1978), but it was not self-contained (it was based on results of another author) and was somewhat fragmentary. Here we give a more elementary proof of this equation based on the simplest properties of toric manifolds.
Keywords: Newton polyhedron, complete intersection, Euler characteristic, toric manifold.
@article{TRSPY_2022_318_a5,
     author = {S. M. Gusein-Zade},
     title = {The {Euler} {Characteristic} of a {Complete} {Intersection} in {Terms} of the {Newton} {Polyhedra} {Revisited}},
     journal = {Informatics and Automation},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a5/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
TI  - The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited
JO  - Informatics and Automation
PY  - 2022
SP  - 66
EP  - 72
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a5/
LA  - ru
ID  - TRSPY_2022_318_a5
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%T The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited
%J Informatics and Automation
%D 2022
%P 66-72
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a5/
%G ru
%F TRSPY_2022_318_a5
S. M. Gusein-Zade. The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 66-72. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a5/

[1] A'Campo N., “La fonction zêta d'une monodromie”, Comment. math. Helv., 50 (1975), 233–248 | DOI | MR | Zbl

[2] V. I. Arnold, Arnold's Problems, Springer, Berlin, 2004 | MR | MR

[3] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, v. 2, Monogr. Math., 83, Monodromy and Asymptotics of Integrals, Birkhäuser, Boston, 1988 | MR | Zbl

[4] D. N. Bernshtein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR

[5] Bernshtein D.N., Kushnirenko A.G., Khovanskii A.G., “Mnogogranniki Nyutona”, UMN, 31:3 (1976), 201–202 | MR | Zbl

[6] Ehlers F., “Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten”, Math. Ann., 218:2 (1975), 127–156 | DOI | MR | Zbl

[7] Ewald G., Combinatorial convexity and algebraic geometry, Grad. Texts Math., 168, Springer, New York, 1996 | DOI | MR | Zbl

[8] S. M. Gusein-Zade, “Integration with respect to the Euler characteristic and its applications”, Russ. Math. Surv., 65:3 (2010), 399–432 | DOI | MR | MR | Zbl

[9] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR

[10] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl | Zbl

[11] Viro O.Ya., “Some integral calculus based on Euler characteristic”, Topology and geometry—Rohlin seminar, Lect. Notes Math., 1346, Springer, Berlin, 1988, 127–138 | DOI | MR