Any Suspension and Any Homology Sphere Are $2H$-Spaces
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 51-65

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the reduced suspension $X = \Sigma Y$ over any finite or countable connected polyhedron $Y$ can be endowed with a two-valued multiplication $\mu \colon X\times X \to \mathrm {Sym}^2 X$ satisfying the unit axiom: $\mu (e,x) = \mu (x,e) = [x,x]$ for all $x\in X$. If $X$ is a sphere $S^m$, $m = 1,3,7$, this is a classical result; for $X=S^2$, this is V. M. Buchstaber's theorem of 1990; and for $X=S^{2k+1}$, $k\ne 0,1,3$, this is our theorem of 2019. We also prove a similar statement for all $X$ that are smoothable homology spheres of arbitrary dimension and for $X=\mathbb R\mathrm P^m$, $m\ge 2$. The proof of one of the main results uses the following statement, which is of independent interest. Let $X$ and $Y$ be connected finite CW complexes and $f\colon X\to Y$ a continuous map inducing an isomorphism in integral homology. Then, for any $n\ge 2$, the map $\mathrm {Sym}^n f\colon \mathrm {Sym}^n X \to \mathrm {Sym}^n\kern 1pt Y$ also induces an isomorphism in integral homology.
Keywords: symmetric powers, $nH$-spaces, homology spheres.
@article{TRSPY_2022_318_a4,
     author = {D. V. Gugnin},
     title = {Any {Suspension} and {Any} {Homology} {Sphere} {Are} $2H${-Spaces}},
     journal = {Informatics and Automation},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a4/}
}
TY  - JOUR
AU  - D. V. Gugnin
TI  - Any Suspension and Any Homology Sphere Are $2H$-Spaces
JO  - Informatics and Automation
PY  - 2022
SP  - 51
EP  - 65
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a4/
LA  - ru
ID  - TRSPY_2022_318_a4
ER  - 
%0 Journal Article
%A D. V. Gugnin
%T Any Suspension and Any Homology Sphere Are $2H$-Spaces
%J Informatics and Automation
%D 2022
%P 51-65
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a4/
%G ru
%F TRSPY_2022_318_a4
D. V. Gugnin. Any Suspension and Any Homology Sphere Are $2H$-Spaces. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 51-65. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a4/