Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lower central series of a right-angled Coxeter group $\mathrm {RC}_{\mathcal K}$ and the corresponding graded Lie algebra $L(\mathrm {RC}_{\mathcal K})$ associated with the lower central series of a right-angled Coxeter group are studied. Relations are obtained in the graded components of the Lie algebra $L(\mathrm {RC}_{\mathcal K})$. A basis of the fourth graded component of $L(\mathrm {RC}_{\mathcal K})$ for groups with at most four generators is described.
@article{TRSPY_2022_318_a2,
     author = {Ya. A. Veryovkin},
     title = {Graded {Components} of the {Lie} {Algebra} {Associated} with the {Lower} {Central} {Series} of a {Right-Angled} {Coxeter} {Group}},
     journal = {Informatics and Automation},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a2/}
}
TY  - JOUR
AU  - Ya. A. Veryovkin
TI  - Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
JO  - Informatics and Automation
PY  - 2022
SP  - 31
EP  - 42
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a2/
LA  - ru
ID  - TRSPY_2022_318_a2
ER  - 
%0 Journal Article
%A Ya. A. Veryovkin
%T Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
%J Informatics and Automation
%D 2022
%P 31-42
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a2/
%G ru
%F TRSPY_2022_318_a2
Ya. A. Veryovkin. Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 31-42. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a2/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | MR | Zbl

[2] V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russ. Math. Surv., 55:5 (2000), 825–921 | DOI | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[4] Duchamp G., Krob D., “The lower central series of the free partially commutative group”, Semigroup Forum, 45:3 (1992), 385–394 | DOI | MR | Zbl

[5] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publ., New York, 1976 | MR | Zbl

[6] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | MR | Zbl

[7] Papadima S., Suciu A.I., “Algebraic invariants for right-angled Artin groups”, Math. Ann., 334:3 (2006), 533–555 | DOI | MR | Zbl

[8] Struik R.R., “On nilpotent products of cyclic groups”, Can. J. Math., 12 (1960), 447–462 | DOI | MR | Zbl

[9] Struik R.R., “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | MR | Zbl

[10] Ya. A. Veryovkin, “The associated Lie algebra of a right-angled Coxeter group”, Proc. Steklov Inst. Math., 305 (2019), 53–62 | DOI | MR | Zbl

[11] Wade R.D., “The lower central series of a right-angled Artin group”, Enseign. math., 61:3 (2015), 343–371 | DOI | MR | Zbl

[12] Waldinger H.V., “The lower central series of groups of a special class”, J. Algebra, 14:2 (1970), 229–244 | DOI | MR | Zbl