On the Component Group of a Real Algebraic Group
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 193-203

Voir la notice de l'article provenant de la source Math-Net.Ru

For a connected linear algebraic group $G$ defined over $\mathbb R$, we compute the component group $\pi _0G(\mathbb R)$ of the real Lie group $G(\mathbb R)$ in terms of a maximal split torus $T_{\mathrm{s}}\subseteq G$. In particular, we recover a theorem of Matsumoto (1964) that each connected component of $G(\mathbb R)$ intersects $T_{\mathrm{s}}(\mathbb R)$. We provide explicit elements of $T_{\mathrm{s}}(\mathbb R)$ which represent all connected components of $G(\mathbb R)$. The computation is based on structure results for real loci of algebraic groups and on methods of Galois cohomology.
Keywords: real algebraic group, component group, split torus, real Galois cohomology.
@article{TRSPY_2022_318_a11,
     author = {Dmitry A. Timashev},
     title = {On the {Component} {Group} of a {Real} {Algebraic} {Group}},
     journal = {Informatics and Automation},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/}
}
TY  - JOUR
AU  - Dmitry A. Timashev
TI  - On the Component Group of a Real Algebraic Group
JO  - Informatics and Automation
PY  - 2022
SP  - 193
EP  - 203
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/
LA  - ru
ID  - TRSPY_2022_318_a11
ER  - 
%0 Journal Article
%A Dmitry A. Timashev
%T On the Component Group of a Real Algebraic Group
%J Informatics and Automation
%D 2022
%P 193-203
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/
%G ru
%F TRSPY_2022_318_a11
Dmitry A. Timashev. On the Component Group of a Real Algebraic Group. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 193-203. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/