On the Component Group of a Real Algebraic Group
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 193-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a connected linear algebraic group $G$ defined over $\mathbb R$, we compute the component group $\pi _0G(\mathbb R)$ of the real Lie group $G(\mathbb R)$ in terms of a maximal split torus $T_{\mathrm{s}}\subseteq G$. In particular, we recover a theorem of Matsumoto (1964) that each connected component of $G(\mathbb R)$ intersects $T_{\mathrm{s}}(\mathbb R)$. We provide explicit elements of $T_{\mathrm{s}}(\mathbb R)$ which represent all connected components of $G(\mathbb R)$. The computation is based on structure results for real loci of algebraic groups and on methods of Galois cohomology.
Keywords: real algebraic group, component group, split torus, real Galois cohomology.
@article{TRSPY_2022_318_a11,
     author = {Dmitry A. Timashev},
     title = {On the {Component} {Group} of a {Real} {Algebraic} {Group}},
     journal = {Informatics and Automation},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/}
}
TY  - JOUR
AU  - Dmitry A. Timashev
TI  - On the Component Group of a Real Algebraic Group
JO  - Informatics and Automation
PY  - 2022
SP  - 193
EP  - 203
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/
LA  - ru
ID  - TRSPY_2022_318_a11
ER  - 
%0 Journal Article
%A Dmitry A. Timashev
%T On the Component Group of a Real Algebraic Group
%J Informatics and Automation
%D 2022
%P 193-203
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/
%G ru
%F TRSPY_2022_318_a11
Dmitry A. Timashev. On the Component Group of a Real Algebraic Group. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 193-203. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a11/

[1] Adams J., Taïbi O., “Galois and Cartan cohomology of real groups”, Duke Math. J., 167:6 (2018), 1057–1097 | DOI | MR | Zbl

[2] Borel A., Tits J., “Groupes réductifs”, Publ. math. Inst. hautes étud. sci., 27 (1965), 55–150 | DOI | MR

[3] Borel A., Tits J., “Compléments à l'article: “Groupes réductifs””, Publ. math. Inst. hautes étud. sci., 41 (1972), 253–276 | DOI | MR | Zbl

[4] M. V. Borovoi, “Galois cohomologies of real reductive groups and real forms of simple Lie algebras”, Funct. Anal. Appl., 22:2 (1988), 135–136 | DOI | MR | Zbl

[5] Borovoi M., Gabber O., A short proof of Timashev's theorem on the real component group of a real reductive group, E-print, 2022, arXiv: 2204.11482 [math.GR] | MR

[6] Borovoi M., Timashev D.A., “Galois cohomology of real semisimple groups via Kac labelings”, Transform. Groups, 26:2 (2021), 433–477 | DOI | MR | Zbl

[7] Borovoi M., Timashev D.A., “Galois cohomology and component group of a real reductive group”, Isr. J. Math. (to appear)

[8] Cupit-Foutou S., Timashev D.A., “Orbits of real semisimple Lie groups on real loci of complex symmetric spaces”, Acta math. Sin. Engl. Ser., 34:3 (2018), 439–453 | DOI | MR | Zbl

[9] V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Structure of Lie Groups and Lie Algebras, Encycl. Math. Sci., 41, Springer, Berlin, 1994 | Zbl

[10] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Acad. Press, New York, 1978 | MR | Zbl

[11] Hochschild G.P., Basic theory of algebraic groups and Lie algebras, Grad. Texts Math., 75, Springer, New York, 1981 | DOI | MR | Zbl

[12] Matsumoto H., “Quelques remarques sur les groupes de Lie algébriques réels”, J. Math. Soc. Japan, 16 (1964), 419–446 | MR | Zbl

[13] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Ser. Sov. Math., Springer, Berlin, 1990 | DOI | MR | MR | Zbl

[14] J.-P. Serre, Galois Cohomology, Springer, Berlin, 1997 | MR | Zbl

[15] Timashev D.A., Homogeneous spaces and equivariant embeddings, Encycl. Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups VIII, Springer, Berlin, 2011 | MR | Zbl