Homology of the $MSU$ Spectrum
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete proof of the Novikov isomorphism $\varOmega ^{{SU}}\otimes \mathbb Z \bigl [\tfrac 12\bigr ]\cong \mathbb Z\bigl [\tfrac 12\bigr ] [y_2,y_3,\ldots ]$, $\deg y_i=2i$, where $\varOmega ^{{SU}}$ is the ${SU}$-bordism ring. The proof uses the Adams spectral sequence and a description of the comodule structure of $H_{\scriptscriptstyle\bullet}({M\kern -1pt SU};\mathbb F_p)$ over the dual Steenrod algebra $\mathfrak A_p^*$ with odd prime $p$, which was also missing in the literature.
@article{TRSPY_2022_318_a0,
     author = {Semyon A. Abramyan},
     title = {Homology of the $MSU$ {Spectrum}},
     journal = {Informatics and Automation},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a0/}
}
TY  - JOUR
AU  - Semyon A. Abramyan
TI  - Homology of the $MSU$ Spectrum
JO  - Informatics and Automation
PY  - 2022
SP  - 5
EP  - 16
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a0/
LA  - ru
ID  - TRSPY_2022_318_a0
ER  - 
%0 Journal Article
%A Semyon A. Abramyan
%T Homology of the $MSU$ Spectrum
%J Informatics and Automation
%D 2022
%P 5-16
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a0/
%G ru
%F TRSPY_2022_318_a0
Semyon A. Abramyan. Homology of the $MSU$ Spectrum. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 5-16. http://geodesic.mathdoc.fr/item/TRSPY_2022_318_a0/