Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_317_a9, author = {Suyoung Choi and Mathieu Vall\'ee}, title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}}, journal = {Informatics and Automation}, pages = {198--209}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/} }
TY - JOUR AU - Suyoung Choi AU - Mathieu Vallée TI - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces JO - Informatics and Automation PY - 2022 SP - 198 EP - 209 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/ LA - ru ID - TRSPY_2022_317_a9 ER -
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/
[1] Billera L.J., Lee C.W., “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Comb. Theory. Ser. A, 31:3 (1981), 237–255 | MR | Zbl
[2] Bosio F., Meersseman L., “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | MR | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Choi S., Masuda M., Oum S., “Classification of real Bott manifolds and acyclic digraphs”, Trans. Amer. Math. Soc., 369:4 (2017), 2987–3011 | MR | Zbl
[5] S. Choi, M. Masuda, and D. Y. Suh, “Rigidity problems in toric topology: A survey”, Proc. Steklov Inst. Math., 275 (2011), 177–190 | MR | Zbl
[6] Choi S., Panov T., Suh D.Y., “Toric cohomological rigidity of simple convex polytopes”, J. London Math. Soc. Ser. 2, 82:2 (2010), 343–360 | MR | Zbl
[7] Choi S., Park H., “Wedge operations and torus symmetries”, Tohoku Math. J. Ser. 2, 68:1 (2016), 91–138 | MR | Zbl
[8] Choi S., Park H., “Wedge operations and torus symmetries. II”, Can. J. Math., 69:4 (2017), 767–789 | MR | Zbl
[9] Choi S., Park H., “Small covers over wedges of polygons”, J. Math. Soc. Japan, 71:3 (2019), 739–764 | MR | Zbl
[10] Choi S., Vallée M., An algorithmic strategy for finding characteristic maps over wedged simplicial complexes, E-print, 2021, arXiv: 2111.07298 [math.GT] | MR
[11] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl
[12] N. Yu. Erokhovets, “Moment–angle manifolds of simple $n$-polytopes with $n+3$ facets”, Russ. Math. Surv., 66:5 (2011), 1006–1008 | MR | Zbl
[13] Ishida H., Fukukawa Y., Masuda M., “Topological toric manifolds”, Moscow Math. J., 13:1 (2013), 57–98 | MR | Zbl
[14] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Algebr. Geom. Topol., 9:4 (2009), 2479–2502 | MR | Zbl
[15] Mani P., “Spheres with few vertices”, J. Comb. Theory. Ser. A, 13:3 (1972), 346–352 | MR | Zbl
[16] M. Masuda, “Cohomological non-rigidity of generalized real Bott manifolds of height 2”, Proc. Steklov Inst. Math., 268 (2010), 242–247 | MR | Zbl
[17] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | MR | Zbl
[18] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | MR | Zbl