Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209
Voir la notice de l'article provenant de la source Math-Net.Ru
A real toric manifold $X^{\Bbb R} $ is said to be cohomologically rigid over ${\Bbb Z} _2$ if every real toric manifold whose ${\Bbb Z} _2$-cohomology ring is isomorphic to that of $X^{\Bbb R} $ is actually diffeomorphic to $X^{\Bbb R} $. Not all real toric manifolds are cohomologically rigid over ${\Bbb Z} _2$. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over ${\Bbb Z} _2$.
Keywords:
real toric variety, real toric manifold, cohomological rigidity.
@article{TRSPY_2022_317_a9,
author = {Suyoung Choi and Mathieu Vall\'ee},
title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}},
journal = {Informatics and Automation},
pages = {198--209},
publisher = {mathdoc},
volume = {317},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/}
}
TY - JOUR AU - Suyoung Choi AU - Mathieu Vallée TI - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces JO - Informatics and Automation PY - 2022 SP - 198 EP - 209 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/ LA - ru ID - TRSPY_2022_317_a9 ER -
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/