Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209

Voir la notice de l'article provenant de la source Math-Net.Ru

A real toric manifold $X^{\Bbb R} $ is said to be cohomologically rigid over ${\Bbb Z} _2$ if every real toric manifold whose ${\Bbb Z} _2$-cohomology ring is isomorphic to that of $X^{\Bbb R} $ is actually diffeomorphic to $X^{\Bbb R} $. Not all real toric manifolds are cohomologically rigid over ${\Bbb Z} _2$. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over ${\Bbb Z} _2$.
Keywords: real toric variety, real toric manifold, cohomological rigidity.
@article{TRSPY_2022_317_a9,
     author = {Suyoung Choi and Mathieu Vall\'ee},
     title = {Cohomological {Rigidity} of the {Connected} {Sum} of {Three} {Real} {Projective} {Spaces}},
     journal = {Informatics and Automation},
     pages = {198--209},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/}
}
TY  - JOUR
AU  - Suyoung Choi
AU  - Mathieu Vallée
TI  - Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
JO  - Informatics and Automation
PY  - 2022
SP  - 198
EP  - 209
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/
LA  - ru
ID  - TRSPY_2022_317_a9
ER  - 
%0 Journal Article
%A Suyoung Choi
%A Mathieu Vallée
%T Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
%J Informatics and Automation
%D 2022
%P 198-209
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/
%G ru
%F TRSPY_2022_317_a9
Suyoung Choi; Mathieu Vallée. Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 198-209. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a9/