Polyhedral Products for Connected Sums of Simplicial Complexes
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 168-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate how the homotopy type of a polyhedral product changes under the operation of taking the connected sum of two simplicial complexes. This is obtained as a consequence of a more general result that considers how the homotopy type of a polyhedral product changes under the operation of gluing two simplicial complexes together along a common full subcomplex.
Keywords: polyhedral product, simplicial complex, connected sum.
@article{TRSPY_2022_317_a7,
     author = {Stephen Theriault},
     title = {Polyhedral {Products} for {Connected} {Sums} of {Simplicial} {Complexes}},
     journal = {Informatics and Automation},
     pages = {168--178},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a7/}
}
TY  - JOUR
AU  - Stephen Theriault
TI  - Polyhedral Products for Connected Sums of Simplicial Complexes
JO  - Informatics and Automation
PY  - 2022
SP  - 168
EP  - 178
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a7/
LA  - ru
ID  - TRSPY_2022_317_a7
ER  - 
%0 Journal Article
%A Stephen Theriault
%T Polyhedral Products for Connected Sums of Simplicial Complexes
%J Informatics and Automation
%D 2022
%P 168-178
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a7/
%G ru
%F TRSPY_2022_317_a7
Stephen Theriault. Polyhedral Products for Connected Sums of Simplicial Complexes. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 168-178. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a7/

[1] Bahri A., Bendersky M., Cohen F.R., “Polyhedral products and features of their homotopy”, Handbook of homotopy theory, CRC Press, Boca Raton, FL, 2020, 103–144 | MR | Zbl

[2] Beben P., Theriault S., “The loop space homotopy type of simply-connected four-manifolds and their generalizations”, Adv. Math., 262 (2014), 213–238 | MR | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[4] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | MR | Zbl

[5] Grbić J., Theriault S., “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | MR | Zbl

[6] Grbić J., Theriault S., “The homotopy type of the polyhedral product for shifted complexes”, Adv. Math., 245 (2013), 690–715 | MR | Zbl

[7] Mather M., “Pull-backs in homotopy theory”, Can. J. Math., 28 (1976), 225–263 | MR | Zbl

[8] McGavran D., “Adjacent connected sums and torus actions”, Trans. Amer. Math. Soc., 251 (1979), 235–254 | MR | Zbl

[9] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | MR | Zbl

[10] Theriault S., “Moment–angle manifolds and Panov's problem”, Int. Math. Res. Not., 2015:20 (2015), 10154–10175 | MR | Zbl

[11] Theriault S., “Toric homotopy theory”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Scientific, Hackensack, NJ, 2018, 1–66 | MR | Zbl