Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88
Voir la notice de l'article provenant de la source Math-Net.Ru
For any flag simplicial complex $\mathcal K$, we describe the multigraded Poincaré series, the minimal number of relations, and the degrees of these relations in the Pontryagin algebra of the corresponding moment–angle complex $\mathcal Z_{\mathcal K}$. We compute the LS-category of $\mathcal Z_{\mathcal K}$ for flag complexes and give a lower bound in the general case. The key observation is that the Milnor–Moore spectral sequence collapses at the second page for flag $\mathcal K$. We also show that the results of Panov and Ray about the Pontryagin algebras of Davis–Januszkiewicz spaces are valid for arbitrary coefficient rings, and introduce the $(\mathbb Z\times \mathbb Z_{\geq 0}^m)$-grading on the Pontryagin algebras which is similar to the multigrading on the cohomology of $\mathcal Z_{\mathcal K}$.
@article{TRSPY_2022_317_a2,
author = {F. E. Vylegzhanin},
title = {Pontryagin {Algebras} and the {LS-Category} of {Moment--Angle} {Complexes} in the {Flag} {Case}},
journal = {Informatics and Automation},
pages = {64--88},
publisher = {mathdoc},
volume = {317},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a2/}
}
F. E. Vylegzhanin. Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a2/