Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 79-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the magnitude of fluctuations of the extreme particle in the model of binary branching Brownian motion with a single catalytic point at the origin.
@article{TRSPY_2022_316_a6,
     author = {Sergey S. Bocharov},
     title = {Fluctuations of the {Rightmost} {Particle} in the {Catalytic} {Branching} {Brownian} {Motion}},
     journal = {Informatics and Automation},
     pages = {79--104},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a6/}
}
TY  - JOUR
AU  - Sergey S. Bocharov
TI  - Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
JO  - Informatics and Automation
PY  - 2022
SP  - 79
EP  - 104
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a6/
LA  - ru
ID  - TRSPY_2022_316_a6
ER  - 
%0 Journal Article
%A Sergey S. Bocharov
%T Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
%J Informatics and Automation
%D 2022
%P 79-104
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a6/
%G ru
%F TRSPY_2022_316_a6
Sergey S. Bocharov. Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 79-104. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a6/

[1] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. I. Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[2] Bocharov S., “Limiting distribution of particles near the frontier in the catalytic branching Brownian motion”, Acta appl. math., 169 (2020), 433–453 | DOI | MR | Zbl

[3] Bocharov S., Harris S.C., “Branching Brownian motion with catalytic branching at the origin”, Acta appl. math., 134 (2014), 201–228 | DOI | MR | Zbl

[4] Bocharov S., Harris S.C., “Limiting distribution of the rightmost particle in catalytic branching Brownian motion”, Electron. Commun. Probab., 21 (2016), 70 | DOI | MR | Zbl

[5] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[6] Bulinskaya E.Vl., “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 34:1 (2021), 141–161 | DOI | MR | Zbl

[7] Carmona P., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 327–351 | MR | Zbl

[8] Dawson D.A., Fleischmann K., “A super-Brownian motion with a single point catalyst”, Stoch. Process. Appl., 49:1 (1994), 3–40 | DOI | MR | Zbl

[9] Engländer J., Fleischmann K., “Extinction properties of super-Brownian motions with additional spatially dependent mass production”, Stoch. Process. Appl., 88:1 (2000), 37–58 | DOI | MR | Zbl

[10] Engländer J., Turaev D., “A scaling limit theorem for a class of superdiffusions”, Ann. Probab., 30:2 (2002), 683–722 | DOI | MR | Zbl

[11] Erickson K.B., “Rate of expansion of an inhomogeneous branching process of Brownian particles”, Z. Wahrscheinlichkeitstheor. verw. Geb., 66 (1984), 129–140 | DOI | MR | Zbl

[12] Fleischmann K., Le Gall J.-F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Relat. Fields, 102:1 (1995), 63–82 | DOI | MR | Zbl

[13] Hu Y., Shi Z., “Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees”, Ann. Probab., 37:2 (2009), 742–789 | MR | Zbl

[14] Lalley S., Sellke T., “Traveling waves in inhomogeneous branching Brownian motions. I”, Ann. Probab., 16:3 (1988), 1051–1062 | DOI | MR | Zbl

[15] Nishimori Y., Shiozawa Y., “Limiting distributions for the maximal displacement of branching Brownian motions”, J. Math. Soc. Japan, 74:1 (2022), 177–216 ; arXiv: 1903.02851 [math.PR] | DOI | MR | Zbl

[16] Ren Y.-X., Song R., Zhang R., “The extremal process of super-Brownian motion”, Stoch. Process. Appl., 137 (2021), 1–34 ; arXiv: 1912.05069 [math.PR] | DOI | MR | Zbl

[17] Roberts M.I., “A simple path to asymptotics for the frontier of a branching Brownian motion”, Ann. Probab., 41:5 (2013), 3518–3541 | DOI | MR | Zbl

[18] Shiozawa Y., “Exponential growth of the numbers of particles for branching symmetric $\alpha $-stable processes”, J. Math. Soc. Japan, 60:1 (2008), 75–116 | DOI | MR | Zbl

[19] Shiozawa Y., “Spread rate of branching Brownian motions”, Acta appl. math., 155 (2018), 113–150 | DOI | MR | Zbl

[20] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta math. Sin., Engl. Ser., 23:6 (2007), 997–1012 | DOI | MR | Zbl