Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a5, author = {D. M. Balashova and E. B. Yarovaya}, title = {Structure of the {Population} of {Particles} for a {Branching} {Random} {Walk} in a {Homogeneous} {Environment}}, journal = {Informatics and Automation}, pages = {64--78}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/} }
TY - JOUR AU - D. M. Balashova AU - E. B. Yarovaya TI - Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment JO - Informatics and Automation PY - 2022 SP - 64 EP - 78 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/ LA - ru ID - TRSPY_2022_316_a5 ER -
%0 Journal Article %A D. M. Balashova %A E. B. Yarovaya %T Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment %J Informatics and Automation %D 2022 %P 64-78 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/ %G ru %F TRSPY_2022_316_a5
D. M. Balashova; E. B. Yarovaya. Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 64-78. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/
[1] Balashova D., Molchanov S., Yarovaya E., “Structure of the particle population for a branching random walk with a critical reproduction law”, Methodol. Comput. Appl. Probab., 23:1 (2021), 85–102 | DOI | MR | Zbl
[2] A. A. Borovkov, Asymptotic Analysis of Random Walks: Light-Tailed Distributions, Encycl. Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl
[3] Chernousova E., Feng Y., Hryniv O., Molchanov S., Whitmeyer J., “Steady states of lattice population models with immigration”, Math. Popul. Stud., 28:2 (2021), 63–80 | DOI | MR | Zbl
[4] Chernousova E., Hryniv O., Molchanov S., “Population model with immigration in continuous space”, Math. Popul. Stud., 27:4 (2020), 199–215 | DOI | MR | Zbl
[5] Chernousova E., Molchanov S., “Steady state and intermittency in the critical branching random walk with arbitrary total number of offspring”, Math. Popul. Stud., 26:1 (2019), 47–63 | DOI | MR | Zbl
[6] Ermakova E., Makhmutova P., Yarovaya E., “Branching random walks and their applications for epidemic modeling”, Stoch. Models, 35:3 (2019), 300–317 | DOI | MR | Zbl
[7] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley Sons, New York, 2008 | MR | MR
[8] Getan A., Molchanov S., Vainberg B., “Intermittency for branching walks with heavy tails”, Stoch. Dyn., 17:6 (2017), 1750044 | DOI | MR | Zbl
[9] Gikhman I.I., Skorokhod A.V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977
[10] Molchanov S., Whitmeyer J., “Stationary distributions in Kolmogorov–Petrovski–Piskunov-type models with an infinite number of particles”, Math. Popul. Stud., 24:3 (2017), 147–160 | DOI | MR | Zbl
[11] S. A. Molchanov and E. B. Yarovaya, “Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk”, Izv. Math., 76:6 (2012), 1190–1217 | DOI | MR | Zbl
[12] S. A. Molchanov and E. B. Yarovaya, “Large deviations for a symmetric branching random walk on a multidimensional lattice”, Proc. Steklov Inst. Math., 282 (2013), 186–201 | DOI | MR | Zbl
[13] Shohat J.A., Tamarkin J.D., The problem of moments, Math. Surv., 1, Am. Math. Soc., New York, 1943 | MR | Zbl
[14] V. A. Vatutin and A. M. Zubkov, “Branching processes. I”, J. Sov. Math., 39:1 (1987), 2431–2475 | DOI | MR | Zbl
[15] Vatutin V.A., Zubkov A.M., “Branching processes. II”, J. Sov. Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl
[16] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd. Tsentra prikl. issl. pri mekh.-mat. fak. MGU, M., 2007
[17] E. B. Yarovaya, “The monotonicity of the probability of return into the source in models of branching random walks”, Moscow Univ. Math. Bull., 65:2 (2010), 78–80 | DOI | MR | Zbl
[18] E. B. Yarovaya, “Models of branching walks and their use in the reliability theory”, Autom. Remote Control, 71:7 (2010), 1308–1324 | DOI | MR | Zbl
[19] E. B. Yarovaya, J. M. Stoyanov, and K. K. Kostyashin, “On conditions for a probability distribution to be uniquely determined by its moments”, Theory Probab. Appl., 64:4 (2020), 579–594 | DOI | MR | MR | Zbl