Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 64-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a symmetric branching random walk in a multi-dimensional lattice with continuous time and Markov branching process at each lattice point. It is assumed that initially at each lattice point there is one particle and in the process of branching any particle can produce an arbitrary number of descendants. For a critical process, under the assumption that the walk is transient, we prove the convergence of the distribution of the particle field to the limit stationary distribution. We show the absence of intermittency in the zone $|x-y| = O(\sqrt {t})$, where $x$ and $y$ are spatial coordinates and $t$ is the time, under the assumption of superexponentially light tails of a random walk and a supercriticality of the branching process at the points of the lattice.
@article{TRSPY_2022_316_a5,
     author = {D. M. Balashova and E. B. Yarovaya},
     title = {Structure of the {Population} of {Particles} for a {Branching} {Random} {Walk} in a {Homogeneous} {Environment}},
     journal = {Informatics and Automation},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/}
}
TY  - JOUR
AU  - D. M. Balashova
AU  - E. B. Yarovaya
TI  - Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
JO  - Informatics and Automation
PY  - 2022
SP  - 64
EP  - 78
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/
LA  - ru
ID  - TRSPY_2022_316_a5
ER  - 
%0 Journal Article
%A D. M. Balashova
%A E. B. Yarovaya
%T Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
%J Informatics and Automation
%D 2022
%P 64-78
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/
%G ru
%F TRSPY_2022_316_a5
D. M. Balashova; E. B. Yarovaya. Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 64-78. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a5/

[1] Balashova D., Molchanov S., Yarovaya E., “Structure of the particle population for a branching random walk with a critical reproduction law”, Methodol. Comput. Appl. Probab., 23:1 (2021), 85–102 | DOI | MR | Zbl

[2] A. A. Borovkov, Asymptotic Analysis of Random Walks: Light-Tailed Distributions, Encycl. Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl

[3] Chernousova E., Feng Y., Hryniv O., Molchanov S., Whitmeyer J., “Steady states of lattice population models with immigration”, Math. Popul. Stud., 28:2 (2021), 63–80 | DOI | MR | Zbl

[4] Chernousova E., Hryniv O., Molchanov S., “Population model with immigration in continuous space”, Math. Popul. Stud., 27:4 (2020), 199–215 | DOI | MR | Zbl

[5] Chernousova E., Molchanov S., “Steady state and intermittency in the critical branching random walk with arbitrary total number of offspring”, Math. Popul. Stud., 26:1 (2019), 47–63 | DOI | MR | Zbl

[6] Ermakova E., Makhmutova P., Yarovaya E., “Branching random walks and their applications for epidemic modeling”, Stoch. Models, 35:3 (2019), 300–317 | DOI | MR | Zbl

[7] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley Sons, New York, 2008 | MR | MR

[8] Getan A., Molchanov S., Vainberg B., “Intermittency for branching walks with heavy tails”, Stoch. Dyn., 17:6 (2017), 1750044 | DOI | MR | Zbl

[9] Gikhman I.I., Skorokhod A.V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977

[10] Molchanov S., Whitmeyer J., “Stationary distributions in Kolmogorov–Petrovski–Piskunov-type models with an infinite number of particles”, Math. Popul. Stud., 24:3 (2017), 147–160 | DOI | MR | Zbl

[11] S. A. Molchanov and E. B. Yarovaya, “Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk”, Izv. Math., 76:6 (2012), 1190–1217 | DOI | MR | Zbl

[12] S. A. Molchanov and E. B. Yarovaya, “Large deviations for a symmetric branching random walk on a multidimensional lattice”, Proc. Steklov Inst. Math., 282 (2013), 186–201 | DOI | MR | Zbl

[13] Shohat J.A., Tamarkin J.D., The problem of moments, Math. Surv., 1, Am. Math. Soc., New York, 1943 | MR | Zbl

[14] V. A. Vatutin and A. M. Zubkov, “Branching processes. I”, J. Sov. Math., 39:1 (1987), 2431–2475 | DOI | MR | Zbl

[15] Vatutin V.A., Zubkov A.M., “Branching processes. II”, J. Sov. Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl

[16] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd. Tsentra prikl. issl. pri mekh.-mat. fak. MGU, M., 2007

[17] E. B. Yarovaya, “The monotonicity of the probability of return into the source in models of branching random walks”, Moscow Univ. Math. Bull., 65:2 (2010), 78–80 | DOI | MR | Zbl

[18] E. B. Yarovaya, “Models of branching walks and their use in the reliability theory”, Autom. Remote Control, 71:7 (2010), 1308–1324 | DOI | MR | Zbl

[19] E. B. Yarovaya, J. M. Stoyanov, and K. K. Kostyashin, “On conditions for a probability distribution to be uniquely determined by its moments”, Theory Probab. Appl., 64:4 (2020), 579–594 | DOI | MR | MR | Zbl