Moment Characteristics of a Random Mapping with Restrictions on Component Sizes
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 376-389
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak {S}_n$ be the semigroup of mappings of an $n$-element set $X$ into itself. For a set $D\subseteq \mathbb N$, denote by $\mathfrak {S}_n(D)$ the family of those mappings in $\mathfrak {S}_n$ whose component sizes belong to $D$. Suppose that a random mapping $\sigma _n=\sigma _n(D)$ is uniformly distributed on $\mathfrak {S}_n(D)$. We consider a class of sets $D\subseteq \mathbb N$ with positive densities in the set $\mathbb N$ of positive integers. Let $\zeta _n$ be the number of components of the random mapping $\sigma _n$. We find asymptotic formulas for the expectation and variance of the random variable $\zeta _n$ as $n\to \infty $.
Keywords:
random mappings, total number of components of a random mapping.
@article{TRSPY_2022_316_a23,
author = {A. L. Yakymiv},
title = {Moment {Characteristics} of a {Random} {Mapping} with {Restrictions} on {Component} {Sizes}},
journal = {Informatics and Automation},
pages = {376--389},
publisher = {mathdoc},
volume = {316},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a23/}
}
A. L. Yakymiv. Moment Characteristics of a Random Mapping with Restrictions on Component Sizes. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 376-389. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a23/