Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a21, author = {P. I. Tesemnivkov and S. G. Foss}, title = {The {Probability} of {Reaching} a {Receding} {Boundary} by a {Branching} {Random} {Walk} with {Fading} {Branching} and {Heavy-Tailed} {Jump} {Distribution}}, journal = {Informatics and Automation}, pages = {336--354}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/} }
TY - JOUR AU - P. I. Tesemnivkov AU - S. G. Foss TI - The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution JO - Informatics and Automation PY - 2022 SP - 336 EP - 354 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/ LA - ru ID - TRSPY_2022_316_a21 ER -
%0 Journal Article %A P. I. Tesemnivkov %A S. G. Foss %T The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution %J Informatics and Automation %D 2022 %P 336-354 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/ %G ru %F TRSPY_2022_316_a21
P. I. Tesemnivkov; S. G. Foss. The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 336-354. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/
[1] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities”, Ann. Appl. Probab., 8:2 (1998), 354–374 | DOI | MR | Zbl
[2] Denisov D., Foss S., Korshunov D., “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16:4 (2010), 971–994 | DOI | MR | Zbl
[3] Durrett R., “Maxima of branching random walks”, Z. Wahrscheinlichkeitstheor. verw. Geb., 62 (1983), 165–170 | DOI | MR | Zbl
[4] Foss S., Korshunov D., Palmowski Z., Rolski T., “Two-dimensional ruin probability for subexponential claim size”, Probab. Math. Stat., 37:2 (2017), 319–335 | MR | Zbl
[5] Foss S., Korshunov D., Zachary S., An introduction to heavy-tailed and subexponential distributions, 2nd ed., Springer, New York, 2013 | MR | Zbl
[6] Foss S., Palmowski Z., Zachary S., “The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk”, Ann. Appl. Probab., 15:3 (2005), 1936–1957 | DOI | MR | Zbl
[7] Foss S., Richards A., “On sums of conditionally independent subexponential random variables”, Math. Oper. Res., 35:1 (2010), 102–119 | DOI | MR | Zbl
[8] Foss S., Zachary S., “The maximum on a random time interval of a random walk with long-tailed increments and negative drift”, Ann. Appl. Probab., 13:1 (2003), 37–53 | DOI | MR | Zbl
[9] Gantert N., “The maximum of a branching random walk with semiexponential increments”, Ann. Probab., 28:3 (2000), 1219–1229 | DOI | MR | Zbl
[10] Kersting G., “A unifying approach to branching processes in a varying environment”, J. Appl. Probab., 57:1 (2020), 196–220 | DOI | MR | Zbl
[11] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl
[12] Klüppelberg C., “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141 | DOI | MR | Zbl
[13] D. A. Korshunov, “Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution”, Theory Probab. Appl., 46:2 (2002), 355–366 | DOI | MR | Zbl
[14] Lindvall T., “Almost sure convergence of branching processes in varying and random environments”, Ann. Probab., 2 (1974), 344–346 | DOI | MR | Zbl
[15] Veraverbeke N., “Asymptotic behaviour of Wiener–Hopf factors of a random walk”, Stoch. Process. Appl., 5:1 (1977), 27–37 | DOI | MR | Zbl