The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 336-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

Foss and Zachary (2003) and Foss, Palmowski and Zachary (2005) studied the probability of achieving a receding boundary on a time interval of random length by a random walk with a heavy-tailed jump distribution. They have proposed and developed a new approach that allows one to generalise the results of Asmussen (1998) to the case of arbitrary stopping times and to a wide class of nonlinear boundaries, and to obtain uniform results over all stopping times. In this paper, we consider a class of branching random walks with fading branching and obtain results on the tail asymptotics for the maximum of a branching random walk on a time interval of random (possibly unlimited) length, as well as uniform results within a class of bounded random time intervals.
Keywords: subexponential and strong subexponential distributions, branching random walk, receding boundary, principle of a single big jump.
@article{TRSPY_2022_316_a21,
     author = {P. I. Tesemnivkov and S. G. Foss},
     title = {The {Probability} of {Reaching} a {Receding} {Boundary} by a {Branching} {Random} {Walk} with {Fading} {Branching} and {Heavy-Tailed} {Jump} {Distribution}},
     journal = {Informatics and Automation},
     pages = {336--354},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/}
}
TY  - JOUR
AU  - P. I. Tesemnivkov
AU  - S. G. Foss
TI  - The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
JO  - Informatics and Automation
PY  - 2022
SP  - 336
EP  - 354
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/
LA  - ru
ID  - TRSPY_2022_316_a21
ER  - 
%0 Journal Article
%A P. I. Tesemnivkov
%A S. G. Foss
%T The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
%J Informatics and Automation
%D 2022
%P 336-354
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/
%G ru
%F TRSPY_2022_316_a21
P. I. Tesemnivkov; S. G. Foss. The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 336-354. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a21/

[1] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities”, Ann. Appl. Probab., 8:2 (1998), 354–374 | DOI | MR | Zbl

[2] Denisov D., Foss S., Korshunov D., “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16:4 (2010), 971–994 | DOI | MR | Zbl

[3] Durrett R., “Maxima of branching random walks”, Z. Wahrscheinlichkeitstheor. verw. Geb., 62 (1983), 165–170 | DOI | MR | Zbl

[4] Foss S., Korshunov D., Palmowski Z., Rolski T., “Two-dimensional ruin probability for subexponential claim size”, Probab. Math. Stat., 37:2 (2017), 319–335 | MR | Zbl

[5] Foss S., Korshunov D., Zachary S., An introduction to heavy-tailed and subexponential distributions, 2nd ed., Springer, New York, 2013 | MR | Zbl

[6] Foss S., Palmowski Z., Zachary S., “The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk”, Ann. Appl. Probab., 15:3 (2005), 1936–1957 | DOI | MR | Zbl

[7] Foss S., Richards A., “On sums of conditionally independent subexponential random variables”, Math. Oper. Res., 35:1 (2010), 102–119 | DOI | MR | Zbl

[8] Foss S., Zachary S., “The maximum on a random time interval of a random walk with long-tailed increments and negative drift”, Ann. Appl. Probab., 13:1 (2003), 37–53 | DOI | MR | Zbl

[9] Gantert N., “The maximum of a branching random walk with semiexponential increments”, Ann. Probab., 28:3 (2000), 1219–1229 | DOI | MR | Zbl

[10] Kersting G., “A unifying approach to branching processes in a varying environment”, J. Appl. Probab., 57:1 (2020), 196–220 | DOI | MR | Zbl

[11] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl

[12] Klüppelberg C., “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141 | DOI | MR | Zbl

[13] D. A. Korshunov, “Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution”, Theory Probab. Appl., 46:2 (2002), 355–366 | DOI | MR | Zbl

[14] Lindvall T., “Almost sure convergence of branching processes in varying and random environments”, Ann. Probab., 2 (1974), 344–346 | DOI | MR | Zbl

[15] Veraverbeke N., “Asymptotic behaviour of Wiener–Hopf factors of a random walk”, Stoch. Process. Appl., 5:1 (1977), 27–37 | DOI | MR | Zbl