Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 316-335

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider probabilities of large deviations for a strongly subcritical branching process $\{Z_n,\, n\ge 0\}$ in a random environment generated by a sequence of independent identically distributed random variables. It is assumed that the increments of the associated random walk $S_n=\xi _1+\ldots +\xi _n$ have finite mean $\mu $ and satisfy the Cramér condition $\operatorname {\mathbf E}e^{h\xi _i}\infty $, $0$. Under additional moment restrictions on $Z_1$, we find exact asymptotics of the probabilities $\operatorname {\mathbf P}(\ln Z_n \in [x,x+\Delta _n))$ with $x/n$ varying in the range $(0,\gamma )$, where $\gamma $ is a positive constant, for all sequences $\Delta _n$ that tend to zero sufficiently slowly as $n\to \infty $. This result complements an earlier theorem of the author on the asymptotics of such probabilities in the case where $x/n>\gamma $.
@article{TRSPY_2022_316_a20,
     author = {A. V. Shklyaev},
     title = {Large {Deviations} of a {Strongly} {Subcritical} {Branching} {Process} in a {Random} {Environment}},
     journal = {Informatics and Automation},
     pages = {316--335},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
JO  - Informatics and Automation
PY  - 2022
SP  - 316
EP  - 335
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/
LA  - ru
ID  - TRSPY_2022_316_a20
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
%J Informatics and Automation
%D 2022
%P 316-335
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/
%G ru
%F TRSPY_2022_316_a20
A. V. Shklyaev. Large Deviations of a Strongly Subcritical Branching Process in a Random Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 316-335. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/