Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 316-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider probabilities of large deviations for a strongly subcritical branching process $\{Z_n,\, n\ge 0\}$ in a random environment generated by a sequence of independent identically distributed random variables. It is assumed that the increments of the associated random walk $S_n=\xi _1+\ldots +\xi _n$ have finite mean $\mu $ and satisfy the Cramér condition $\operatorname {\mathbf E}e^{h\xi _i}\infty $, $0$. Under additional moment restrictions on $Z_1$, we find exact asymptotics of the probabilities $\operatorname {\mathbf P}(\ln Z_n \in [x,x+\Delta _n))$ with $x/n$ varying in the range $(0,\gamma )$, where $\gamma $ is a positive constant, for all sequences $\Delta _n$ that tend to zero sufficiently slowly as $n\to \infty $. This result complements an earlier theorem of the author on the asymptotics of such probabilities in the case where $x/n>\gamma $.
@article{TRSPY_2022_316_a20,
     author = {A. V. Shklyaev},
     title = {Large {Deviations} of a {Strongly} {Subcritical} {Branching} {Process} in a {Random} {Environment}},
     journal = {Informatics and Automation},
     pages = {316--335},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
JO  - Informatics and Automation
PY  - 2022
SP  - 316
EP  - 335
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/
LA  - ru
ID  - TRSPY_2022_316_a20
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
%J Informatics and Automation
%D 2022
%P 316-335
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/
%G ru
%F TRSPY_2022_316_a20
A. V. Shklyaev. Large Deviations of a Strongly Subcritical Branching Process in a Random Environment. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 316-335. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a20/

[1] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[2] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Relat. Fields, 15:4 (2009), 493–524 ; arXiv: 0810.4991 [math.PR] | MR | Zbl

[3] V. Bansaye and C. Böinghoff, “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34 | DOI | MR | Zbl

[4] Böinghoff C., Kersting G., “Upper large deviations of branching processes in a random environment—Offspring distributions with geometrically bounded tails”, Stoch. Process. Appl., 120:10 (2010), 2064–2077 | DOI | MR | Zbl

[5] A. A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl

[6] Buraczewski D., Dyszewski P., Precise large deviation estimates for branching process in random environment, E-print, 2017, arXiv: 1706.03874 [math.PR] | MR

[7] D. V. Dmitruschenkov, “On large deviations of a branching process in random environments with immigration at moments of extinction”, Discrete Math. Appl., 25:6 (2015), 339–343 | DOI | MR | Zbl

[8] D. V. Dmitruschenkov and A. V. Shklyaev, “Large deviations of branching processes with immigration in random environment”, Discrete Math. Appl., 27:6 (2017), 361–376 | DOI | MR | Zbl

[9] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl

[10] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl

[11] M. V. Kozlov, “On large deviations of branching processes in a random environment: Geometric distribution of descendants”, Discrete Math. Appl., 16:2 (2006), 155–174 | DOI | MR | Zbl

[12] M. V. Kozlov, “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl., 54:3 (2010), 424–446 | DOI | MR | Zbl

[13] V. V. Petrov, Sums of Independent Random Variables, Akademie-Verl., Berlin, 1975 | MR | Zbl

[14] A. V. Shklyaev, “Large deviations of branching process in a random environment. I”, Discrete Math. Appl., 31:4 (2021), 281–291 | DOI | MR | MR | Zbl

[15] A. V. Shklyaev, “Large deviations of branching process in a random environment. II”, Discrete Math. Appl., 31:6 (2021), 431–447 | MR | MR | Zbl

[16] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40:3 (1969), 814–827 | DOI | MR | Zbl