Sizes of Trees in a Random Forest and Configuration Graphs
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 298-315

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Galton–Watson random forests with $N$ rooted trees and $n$ nonroot vertices. The distribution of the number of offspring of the critical homogeneous branching process generating a forest has infinite variance. Such branching processes are used in the study of the structure of random configuration graphs designed for simulating complex communication networks. We prove theorems on the limit distributions of the number of trees of a given size for various relations between $N$ and $n$ as they tend to infinity.
@article{TRSPY_2022_316_a19,
     author = {Yu. L. Pavlov and I. A. Cheplyukova},
     title = {Sizes of {Trees} in a {Random} {Forest} and {Configuration} {Graphs}},
     journal = {Informatics and Automation},
     pages = {298--315},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a19/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - I. A. Cheplyukova
TI  - Sizes of Trees in a Random Forest and Configuration Graphs
JO  - Informatics and Automation
PY  - 2022
SP  - 298
EP  - 315
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a19/
LA  - ru
ID  - TRSPY_2022_316_a19
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A I. A. Cheplyukova
%T Sizes of Trees in a Random Forest and Configuration Graphs
%J Informatics and Automation
%D 2022
%P 298-315
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a19/
%G ru
%F TRSPY_2022_316_a19
Yu. L. Pavlov; I. A. Cheplyukova. Sizes of Trees in a Random Forest and Configuration Graphs. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 298-315. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a19/